화학공학소재연구정보센터
Journal of Materials Science, Vol.45, No.15, 3981-3989, 2010
Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor
Hollow polymer microspheres with different polarity and functional group for the shell layer containing gold nanocolloid cores adsorbed on the inner surface were prepared by selective removal of sandwiched silica layer from the corresponding gold/silica/polydivinylbenzene (Au/SiO2/PDVB), Au/SiO2/poly(ethyleneglycol dimethacrylate) (Au/SiO2/PEGDMA), and Au/SiO2/poly(ethyleneglycol dimethacrylate-co-methacrylic acid) (Au/SiO2/P(EGDMA-co-MAA) tri-layer microspheres, respectively. The tri-layer microspheres were synthesized by distillation precipitation polymerizations of divinylbenzene (DVB), ethyleneglycol dimethacrylate (EGDMA), EGDMA together with methacrylic acid (MAA) in presence of 3-(methacryloxy) propyltrimethoxysilane (MPS)-modified gold/silica (Au/SiO2) core-shell particles as seeds, which were prepared by coating of a layer of silica onto the surface of Au nanocolloids with the aid of polyvinylpyrrolidone (PVP) via a modified Stober method. The catalytic property and stability as a microreactor of the hollow polymer microspheres with Au nanocolloid cores adsorbed on the inner surface were studied by the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AnP) with sodium borohydride (NaBH4) as reductant. Transmission electron microscopy (TEM) and Fourier transform infrared spectra (FT-IR) were used for characterizing the morphology and structure of the resultant microspheres.