화학공학소재연구정보센터
Journal of Materials Science, Vol.45, No.17, 4631-4644, 2010
Microstructure evolution of CuZr polycrystals processed by high-pressure torsion
The microstructure evolution of extruded Cu-0.18 wt% Zr polycrystals processed by high-pressure torsion (HPT) at room temperature at the pressure of 4 GPa and the different number of the HPT revolutions (i.e. different strain) was investigated using the combination of the electron back-scatter diffraction, microhardness measurements and the X-ray diffraction. A significant transition from the inhomogeneous microstructure after few HPT revolutions into the homogeneous equiaxed microstructure with increasing number of HPT rotations was observed. HPT straining leads to the grain size refinement by a factor more than 100 after the 25 HPT revolutions. Moreover, the EBSD revealed an increase in the fraction of high-angle grain boundaries (HAGBs) with increasing HPT straining reaching the value of 70% after 25 revolutions. Additionally, a slight increase of the twin-related CSL I 3 pound grain boundaries occurred during the microstructure refinement. The microhardness measurements confirmed the billet radial inhomogeneity at early stages of the HPT straining, whereas with increasing number of the HPT rotations, causing the specimen fragmentation and homogenization, the microhardness values increased. The average crystallite size and the average dislocation density in individual specimens determined by the XRD diffraction were in the range of approximately 100-200 nm and 2 x 10(15) m(-2), respectively. Moreover, XRD measurements confirmed the absence of residual stresses in all specimens.