Journal of Materials Science, Vol.45, No.19, 5211-5217, 2010
Bond strength of experimental cyanoacrylate-modified dental glass ionomer cements
Glass ionomer cement (GIC) has been successfully used in dental field for more than 40 years. Despite numerous advantages of GIC, low bond strength and slow setting rate limited conventional GICs for use only at low stress-bearing areas. To improve bond strength to tooth, two kinds of cyanoacrylates such as ethyl 2-cyanoacrylate (EC) and allyl 2-cyanoacrylate (AC) were added in a commercial GIC. Changes in setting time of cyanoacrylate-modified GICs (CMGICs) according to the concentration of cyanoacrylates and/or p-toluene sulfonic acid (TSA) was investigated using a rheometer. Shear bond strength to human dentin was measured. Biocompatibility was determined by the viability of fibroblasts. Optimal concentrations for EC and TSA were 5-10% of the GIC powder and 30% of the GIC liquid, respectively. EC-based CMGIC showed twofold increase of initial bond strength compared with conventional GIC. Also, AC-based CMGIC showed three times higher bond strength and similar biocompatibility compared with the GIC. Therefore, CMGIC materials can be widely applied in dental adhesive restoration field because they showed improved bond strength and proper setting time.