Journal of Materials Science, Vol.46, No.1, 55-62, 2011
Effect of inversion on thermoelastic and thermal transport properties of MgAl2O4 spinel by atomistic simulation
MgAl2O4 is commonly found in the normal spinel structure with the Mg2+ ions located in tetrahedral sites and the Al3+ ions occupying octahedral sites. We use atomic-level simulation to characterize the effect of inversion on the elastic and thermal properties. Cation ordering and volumetric changes tend to affect the structure and properties in opposite ways, thereby compensating each other up for up to 50% inversion. For higher inversions, volumetric effects dominate. In the case of the thermal conductivity, the effects of changes in the elastic properties and thermal expansion essentially cancel over the entire range of inversion.