화학공학소재연구정보센터
Journal of Non-Newtonian Fluid Mechanics, Vol.165, No.5-6, 292-298, 2010
Drag reduction and heat transfer in surfactant solutions with excess counterion
We present the results of a study of turbulent drag reduction in a small circulating loop using surfactant solutions with excess counterion. In addition, these solutions were used in measurements of heat transfer, both in pipe flow and in an impinging jet. Both frictional drag and heat transfer were reduced in the pipe flow experiments. Measurements of heat transfer in the impinging jet revealed a dependence on the molar concentration ratio of the counterion. When the counterion was added at a molar concentration 30 times higher than that of the surfactant, the resulting surfactant solution did not reduce the rate of heat transfer in the impinging jet. By using this surfactant system in an impinging jet, we show both a reduction in pipe friction and normal heat transfer potential in a circulating heat exchange system. In order to investigate this difference in heat transfer between pipe flows and impinging jet flows, a comparison was made of the wall shear stress between these two flow regimes. The estimated wall shear stress was of the same order in both flows, and thus was not considered to be the primary cause of the difference in heat transfer. It is instead suggested that the micellar structure of the surfactant is influenced by a compressive deformation of the impinging flow in a manner that is different from the shear deformation observed in pipe flow. (C) 2010 Elsevier B.V. All rights reserved.