화학공학소재연구정보센터
Journal of Power Sources, Vol.195, No.15, 4622-4627, 2010
Effect of gas composition on Ru dissolution and crossover in polymer-electrolyte membrane fuel cells
Pt-Ru-based anodes are commonly used in polymer-electrolyte membrane fuel cells (PEMFCs) to provide improved CO tolerance for reformate fuel applications. However, Ru crossover from the anode to the cathode has been identified as a critical durability problem that has severe performance implications. In the present study, an anode accelerated stress test (AST) was used to simulate potential spikes that occur during fuel cell start-ups and shutdowns to induce Ru crossover. The effects of fuel gas composition, namely hydrogen and carbon dioxide concentrations, on Ru dissolution and crossover were investigated. The cell performance losses were correlated with the degree of Ru crossover as determined by the changes in cathode cyclic voltammetry (CV) characteristics and neutron activation analysis (NAA). It was found that higher hydrogen concentration in the fuel accelerated Ru crossover and that the presence of carbon dioxide hindered Ru crossover. In particular, the injection of 20 vol.% carbon dioxide during potential cycling resulted in very minor Ru crossover, which showed essentially identical performance losses and CV characteristic changes as a fuel cell composed of a Ru-free anode. The experimental results suggest that the Ru species in our Pt-Ru metal oxide catalysts need to go through a reduction step by hydrogen before dissolution. The presence of carbon dioxide may play a role in hindering the reduction step. (C) 2010 Elsevier B.V. All rights reserved.