Journal of Power Sources, Vol.195, No.20, 7046-7053, 2010
Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis
Large triple phase boundaries (TPBs) and high gas diffusion capability are critical in enhancing the performance of a solid oxide fuel cell (SOFC). In this study, ultrasonic spray pyrolysis has been investigated to assess its capability in controlling the anode microstructure. Deposition of porous anode film of nickel and Ce0.9Gd0.1O1.95 on a dense 8 mol.% yttria stabilized zirconia (YSZ) substrate was carried out. First, an ultrasonic atomization model was utilized to predict the deposited particle size. The model accurately estimated the deposited particle size based on the feed solution condition. Second, effects of various process parameters, which included the precursor solution feed rate, precursor solution concentration and deposition temperature, on the TPB formation and porosity were investigated. The deposition temperature and precursor solution concentration were the most critical parameters that influenced the morphology, porosity and particle size of the anode electrode. Ultrasonic spray pyrolysis achieved homogeneous distribution of constitutive elements within the deposited particles and demonstrated capability to control the particle size and porosity in the range of 2-17 mu m and 21-52%, respectively. (C) 2010 Elsevier B.V. All rights reserved.