Journal of Power Sources, Vol.196, No.1, 508-513, 2011
An investigation of zincite from spent anodic portions of alkaline batteries: An industrial mineral approach for evaluating stock material for recycling potential
The mineralogy of anodic portions of spent alkaline batteries from a leading brand (Duracell) that had been equilibrated in ambient air for approximately 4 months was investigated to determine if material generated from this low energy process may be suitable stock material for recycling. Powder X-ray diffraction (XRD) identified the bulk of the ambient air oxidized anodic material as zincite (ZnO). Scanning electron microscopy investigation indicates a variety of textures of zincite are present with euhedral hexagonal prisms being the most common crystal form. Energy dispersive spectroscopy (EDS) analysis indicates that there are no minor amounts of Mn within the zincite. Transmission electron microscopy investigation indicates a variety of textures exist in the <2 mu m size fraction including near euhedral prismatic crystals, crystals with step-fashion terminations and indentations, heavily corroded zincite and near amorphous aggregates of anastomozing zinc oxide. Impurities in the <2 mu m size fraction include minor amounts of unidentified mixed sulfate materials and are interpreted as dominantly occurring as thin coatings on zincite particles. Discrete submicrometer-sized spherical and rhomboid particles of Zn-Mn oxides are also common impurities in the <2 mu m size fraction but occurr at abundance of <1% by volume. This study provides new baseline information that can be used to develop large scale recycling of zincite from spent alkaline batteries. A promising applications of zincite are numerous, including the development of new solar cell materials. The spent alkaline battery waste stream may serve as promising resource for driving further development of this sector of the economy. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Zincite;Transmission electron microscopy;Scanning electron microscopy;Spent alkaline battery recycling;Anodic material