화학공학소재연구정보센터
Journal of Power Sources, Vol.196, No.6, 3239-3243, 2011
Flexible thermoelectric generator for ambient assisted living wearable biometric sensors
In this work we proposed design, fabrication and functional characterization of a very low cost energy autonomous, maintenance free, flexible and wearable micro thermoelectric generator (mu TEG), finalized to power very low consumption electronics ambient assisted living (AAL) applications. The prototype. integrating an array of 100 thin films thermocouples of Sb2Te3 and Bi2Te3, generates, at 40 degrees C, an open circuit output voltage of 430 mV and an electrical output power up to 32 nW with matched load. In real operation conditions of prototype, which are believed to be very close to a thermal gradient of 15 degrees C. the device generates an open circuit output voltage of about 160 mV, with an electrical output power up to 4.18 nW. In the first part of work, deposition investigation Sb(2)T(e)3 and Bi2Te3 thin films alloys on Kapton HN polyimide foil by RF magnetron co-sputtering technique is discussed. Deposition parameters have been optimized to gain perfect stoichiometric ratio and high thermoelectric power factor: fabricated thermo-generator has been tested at low gradient conditioned to evaluate applications like human skin wearable power generator for ambient assisted living applications. (c) 2010 Elsevier B.V. All rights reserved.