Journal of Power Sources, Vol.196, No.10, 4724-4728, 2011
Catalytic activity of bimetallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory
We present density-functional theory calculations of the chemisorption of atomic species O, S, C, H and reaction intermediates OH, SH, and CHn (n = 1, 2, and 3) on M/Ni alloy model catalysts (M = Bi, Mo, Fe, Co, and Cu). The activity of the Ni alloy catalysts for solid-oxide fuel cell (SOFC) anode oxidation reactions is predicted, based on a simple descriptor, i.e., the binding energy of oxygen. First, we find that the binding of undesirable intermediates, such as C and S. can be inhibited and the catalytic activity of planar Ni-based anodes can be tuned towards oxidation by selectively forming a bimetallic surface alloy. In particular, Cu/Ni, Fe/Ni, and Co/Ni anode catalysts are found to be most active towards anode oxidation. On the other hand, the Mo/Ni alloy surface is predicted to be the most effective catalyst in terms of inhibiting the deposition of C and S (while still preserving relatively high catalytic activity). The formation of a surface alloy, which has the alloy element enriched on the topmost surface, was found to be critical to the activity of the Ni alloy catalysts. (C) 2011 Elsevier B.V. All rights reserved.