Journal of the American Chemical Society, Vol.132, No.8, 2663-2671, 2010
A Contractile Electronic Switch Made of DNA
Double-helical DNA has been shown to conduct both electrons and electron holes, the latter over distances of >20 nm. DNA is thus a material of significant interest for the bottom-up construction of nanocircuitry. Here, we describe a contractile DNA nanoswitch, which can toggle between a structurally extended "off' state and a contracted "on" state, with a 40-fold conductivity difference between the two. To turn on, two short motifs of guanine-guanine mismatches in an otherwise standard double helix synapse to form a conductive G-quadruplex, bypassing an insulating element within the helix. This switch can be turned repeatedly on by treatment with millimolar concentrations of K+ and turned off by sequestration of the K+ by a crown ether. Circular dichroism and thymine-thymine photocross-linking experiments reveal that strand orientations within the on state G-quadruplex are wholly antiparallel and that the two conductive double-helices interface with the same face of the quadruplex. Although this DNA nanoswitch is chemically gated, it should be adaptable to other kinds of gating and thus serve as a prototype for increasingly sophisticated and complex electronic devices made of DNA.