Journal of the American Chemical Society, Vol.132, No.15, 5405-5412, 2010
In Situ Misfolding of Human Islet Amyloid Polypeptide at Interfaces Probed by Vibrational Sum Frequency Generation
Kinetic analysis of conformational changes of proteins at interfaces is crucial for understanding many biological processes at membrane surfaces. In this study, we demonstrate that surface-selective sum frequency generation (SFG) spectroscopy can be used to investigate kinetics of conformational changes of proteins at interfaces. We focus on an intrinsically disordered protein, human islet amyloid polypeptide (hIAPP) that is known to misfold into the beta-sheet structure upon interaction with membranes. Using the ssp polarization setting (s-polarized SFG, s-polarized visible, and p-polarized infrared), we observe changes in the amide I spectra of hIAPP at the air/water interface after addition of dipalmitoylphosphoglycerol (DPPG) that correspond to the lipid-induced changes in secondary structures. We also used the chiral-sensitive psp polarization setting to obtain amide I spectra and observed a gradual buildup of the chiral structures that display the vibrational characteristics of parallel beta-sheets. We speculate that the second-order chiral-optical response at the antisymmetric stretch frequency of parallel beta-sheet at 1622 cm(-1) could be a highly characteristic optical property of the beta-sheet aggregates not only for hIAPP, but possibly also for other amyloid proteins. Analyzing the achiral and chiral amide I spectra, we conclude that DPPG induces the misfolding of hIAPP from alpha-helical and random-coil structures to the parallel beta-sheet structure at the air/water interface. We propose that SFG could complement existing techniques in obtaining kinetic and structural information for probing structures and functions of proteins at interfaces.