화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.132, No.21, 7276-7276, 2010
Prediction of Folding Equilibria of Differently Substituted Peptides Using One-Step Perturbation
Computer simulation using long molecular dynamics (MD) can be used to simulate the folding equilibria of peptides and small proteins. However, a systematic investigation of the influence of the side-chain composition and position at the backbone on the folding equilibrium is computationally as well as experimentally too expensive because of the exponentially growing number of possible side-chain compositions and combinations along the peptide chain. Here, we show that application of the one-step perturbation technique may solve this problem, at least computationally; that is, one can predict many folding equilibria of a polypeptide with different side-chain substitutions from just one single MD simulation using an unphysical reference state. The methodology reduces the number of required separate simulations by an order of magnitude.