화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.132, No.26, 8906-8906, 2010
Controlled Alignment of Multiple Proteins and Nanoparticles with Nanometer Resolution via Backbone-Modified Phosphorothioate DNA and Bifunctional Linkers
Controlled alignment of streptavidin (STV), myoglobin, and nanoparticles with nanometer resolution has been achieved via backbone-modified phosphorothioate DNA and biotin- and maleimide-containing bifunctional linkers. Introducing triplet biotin modifications in three adjacent PSs significantly increased the STV conjugation yield. By placing phosphorothioate modifications at multiple positions of a double stranded DNA template, monomer, dimer, and trimer STV-DNA assemblies were formed with the STVs placed at controlled positions. The activity of the conjugated protein has been demonstrated by binding biotinylated AuNPs onto STV-DNA complexes, indicating the use of the system as a template for the formation of AuNP dimers and trimers with STVs separated by distances of 10-30 nm. Furthermore, a melting