Journal of the American Chemical Society, Vol.132, No.28, 9693-9700, 2010
Control of the Orientational Order and Nonlinear Optical Response of the "Push-Pull" Chromophore RuPZn via Specific Incorporation into Densely Packed Monolayer Ensembles of an Amphiphilic 4-Helix Bundle Peptide: Second Harmonic Generation at High Chromophore Densities
The macroscopic nonlinear optical response of the "push-pull" chromophore RuPZn incorporated into a single monolayer of the amphiphilic 4-helix bundle peptide (AP0) covalently attached to a solid substrate at high in-plane density has been measured. The second-order susceptibility, chi(zzz), was found to be in the range of similar to 15 x 10(-9) esu, consistent with a coherent sum of the nonlinear contributions from the individual chromophores ((beta) over bar) as previously measured in isotropic solution through hyper-Rayleigh scattering as well as estimated from theoretical calculations. The microscopic hyperpolarizability of the RuPZn chromophore is preserved upon incorporation into the peptide monolayer, suggesting that the chromophore-chromophore interactions in the densely packed ensemble do not substantially affect the first-order molecular hyperpolarizability. The polarization angle dependence of the second harmonic signal reveals that the chromophore is vectorially oriented in the two-dimensional ensemble. Analysis of the order parameter together with information obtained from grazing incidence X-ray diffraction help in determining the chromophore orientation within the AP0-RuPZn monolayer. Taking into account an average pitch angle of similar to 20 degrees characterizing the coiled-coil structure of the peptide bundle, the width of the bundle's tilt angle distribution should be sigma <= 20 degrees, resulting in a mean value of the tilt angle 23 degrees <= theta(0) <= 37 degrees.