Journal of the American Chemical Society, Vol.132, No.47, 16790-16795, 2010
Atomistic Evidence of How Force Dynamically Regulates Thiol/Disulfide Exchange
The intricate coupling of mechanical force and chemical reactivity has been increasingly revealed in recent years by force spectroscopy experiments on the thiol/disulfide exchange reaction. We here aimed at elucidating the underlying dynamic effects of force on the reaction center for the case of disulfide bond reduction by dithiothreitol at forces of 200-2000 pN, by combining transition path sampling and quantum/classical mechanical simulations. Reaction rates and their dependence on force as quantified by Delta x(r), the distance between reactant and transition state, are in good agreement with experiments but indicate a shift of the transition state structure at high forces. Indeed, while an associate S(N)2 mechanism prevails, force causes a move of the transition state to a longer length of the cleaving bond and a shorter length of the forming disulfide bond. Our results highlight the distribution of force into various degrees of freedom, which implies that care must be taken when correlating Delta x(r) with a single order parameter of the reaction.