화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.10, 3276-3279, 2011
Spectral Diffusion at the Water/Lipid Interface Revealed by Two-Dimensional Fourth-Order Optical Spectroscopy: A Classical Simulation Study
Using a classical simulation protocol for nonlinear optical signals, we predict the two-dimensional (2D) spectra of water near a monolayer of [1,2-dimytristoyl-sn-glycero-3-phosphatidylcholine] (DMPC) generated by three IR probe pulses followed by one visible probe pulse. Sum-frequency-generation 1D spectra show two peaks of the OH stretch representing two environments: near-bulk water nonadjacent to DMPC and top-layer water adjacent to DMPC. These peaks create a 2D pattern in the fourth-order signal. The asymmetric cross-peak pattern with respect to the diagonal line is a signature of coherence transfer from the higher-to the lower-frequency modes. The nodal lines in the imaginary part of the 2D spectrum show that the near-bulk water has fast spectral diffusion resembling that of bulk water despite the orientation by the strong electrostatic field of DMPC. The top-layer water has slower spectral diffusion.