화학공학소재연구정보센터
Langmuir, Vol.26, No.23, 17913-17918, 2010
Interfacial Properties of Emulsions Stabilized with Surfactant and Nonsurfactant Coated Boehmite Nanoparticles
The properties of emulsions stabilized with surface-modified boehmite particles of 26 and 8 nm in diameter have been investigated. The surface-modified particles were prepared by mixing aqueous dispersions of cationic boehmite particles with aqueous solutions of the surfactant p-dodecylbenzenesulfonic acid (DBSA) or the nonsurfactant p-toluenesulfonic acid (TSA). For the 26 nm particles, interfacial tension measurements indicate that p-dodecylbenzenesulfonic acid partitions between the particle surface and the oil-water interface, while p-toluenesulfonic acid remains on the particle surface. The partitioning of p-dodecylbenzenesulfonic acid supports the formation of emulsions, although in the absence of the particles the same surfactant concentration is not sufficient for emulsion stabilization. Due to the fast exchange kinetics, p-dodecylbenzenesulfonic acid is gradually replaced by particles. At equilibrium, the interfacial tension in the presence of the surface-modified particles is between the values for the pure particles and the pure surfactant solutions. However, the interfacial tension is independent of the surfactant concentration used in the preparation of the particles. Reducing the particle size to 8 nm leads to increased emulsion stability, and thus, the minimum particle concentration required to prepare stable emulsions was reduced to 0.1 g/L. However, above approximately 3.5 mmol/L of the sulfonic acids, the small particles dissolve slowly, and the emulsion stability is lost. This mechanism can be used to trigger the collapse of the emulsions.