화학공학소재연구정보센터
Langmuir, Vol.27, No.4, 1487-1493, 2011
Single Component and Selective Competitive Protein Adsorption in a Patchy Polymer Brush: Opposition between Steric Repulsions and Electrostatic Attractions
This work explores the use of "patchy" polymer brushes to control protein adsorption rates on engineered surfaces and to bind targeted species from protein mixtures with high selectivity but without invoking molecular recognition. The brushes of interest contain embedded cationic "patches" composed of isolated adsorbed poly(L-lysine) coils (PLL) that are about 10 nm in diameter and are randomly arranged on a silica substrate. Around these patches is a protein-resistant poly(ethylene glycol) (PEG) brush that is formed from the adsorption of a PLL-g-PEG graft copolymer on the remaining silica surface. Electrostatic attractions between individual cationic patches and the negative regions of approaching proteins may be energetically insufficient to bind proteins. Furthermore, protein-patch attractions are reduced by steric repulsions between proteins and the PEG brush. We show that protein adsorption, gauged by ultimate short-term coverages and by the initial protein adsorption rate, exhibits an adhesion threshold: pure PEG brushes of the architectures employed here and brushes containing sparse loadings of PLL patches do not adsorb protein. Above a critical PLL patch loading or threshold, protein adsorption proceeds, often dramatically. The PLL patch thresholds are specific to the protein of interest, allowing surfaces to be engineered to adhesively discriminate different proteins within a mixture. The separation achieved is remarkably sharp: one protein adsorbs, but the second is completely rejected from the interface. The surfaces in this study, by virtue of their well-controlled and well-characterized patchy nature, distinguish themselves from multicomponent brushes or brushes used to end-tether peptide sequences and nucleotides.