Langmuir, Vol.27, No.8, 4439-4446, 2011
Long-Range Interaction between Heterogeneously Charged Membranes
Despite their neutrality, surfaces or membranes with equal amount of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite size domain structures These domains can be formed in lipid membranes Inhere the balance of the different ranges of strong but short ringed hydrophobic interactions and longer ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the elecrostatic interactions, these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain: This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased.