Journal of Physical Chemistry A, Vol.115, No.9, 1676-1685, 2011
Cation Environment of BaCeO3-Based Protonic Conductors II: New Computational Models
Quantum chemical calculations have been carried, out to simulate Y-doped BaCeO3 derivatives. Hartree-Fock energy functional was used to study octahedral site environments embedded in a Pmcn orthorhombic framework, showing local arrangement characterized by Ce-O-Ce, Ce-O-Y, and Y-O-Y (Z-O-Xi) configurations and including or not hydrogen close to the moieties encompassing those configurations. The latter are, in fact, representative of and, in our modeling approach, were treated as - local arrangements that could be found in Y:BaCeO3-doped materials. The geometrical. optimizations performed on the structural models and a detailed orbital analysis of these systems allowed us to confirm and deepen new interpretations, concerning experimental findings already reported in the literature. In particular, the bimodal distribution characterizing the Y-O first coordination shell, found by EXAFS analysis, could be attributed to a local clustering of Y atoms showing characteristic Y-O-Y arrangements. Moreover, the local charge analysis, characterizing the models containing or not hydrogen atoms, showed that the moving protons are able to dynamically change the properties of their near environment, in any case, leaving unaltered the global protonic conduction features of the material, irrespective of the kind of cation in a given Z-D-Xi moiety.