- Previous Article
- Next Article
- Table of Contents
Clean Technology, Vol.17, No.1, 1-12, March, 2011
자기치유 공학재료: 1. 유기 재료
Self-healing Engineering Materials: I. Organic Materials
E-mail:
초록
과학자와 공학자들은 끊임없이 금속, 합금, 고분자, 세라믹 등의 공학재료의 성질을 계속해서 변화하는 사회의 요구에 부응하는 방향으로 개선하여 왔다. 인조 공학재료는 일반적으로 기계적 성질이 우수하여, 자연 재료의 기계적 성질보다 우수한 경우가 많다. 그러나,이와 같은 공학 재료는 자연계에서 흔히 볼 수 있는 자기 치유능력,즉 고의적인 인간의 접촉을 거치지 않고도 미세균열을 제거하는 능력이 부족하다. 자연에서 관측할 수 있는 손상관리 패러다임은 여러가지 종류의 공학재료의 고유성질을 잘 고려하면 인조공학재료에서도 성공적으로 재현할 수 있다. 특히 적절한 화학반응과 분자간력을 응용하면고분자,아이오노머,복합체와 같은 유기재료에 적용할 수 있는 다양한 자기치유 방법을 개발할 수 있다.
Scientists and engineers have altered the properties of materials such as metals, alloys, polymers, ceramics, and so on, to suit the ever changing needs of our society. Man-made engineering materials generally demonstrate excellent mechanical properties, which often tar exceed those of natural materials. However, all such engineering materials lack the ability of selfhealing, i.e. the ability to remove or neutralize microcracks without intentional human interaction. The damage management paradigm observed in nature can be reproduced successfully in man-made engineering materials, provided the intrinsic character of the various types of engineering materials is taken into account. Various self-healing ptotocols that can be applied for the organic materials such as polymers, ionomers and composites can be developed by utilizing suitable chemical reactions and physical intermolecular interactions.
- Martin D. Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US, “Self Healing Materials,” Adv. Mater., Article first published online: 13 SEP 2010, DOI: 10.1002/adma.201003036.
- Ghosh SK, “Self-healing Materials: Fundamentals, Design Strategies, and Applications,” Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)
- White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S, Nature, 409(6822), 794 (2001)
- Brown EN, Sottos NR, White SR, Exp. Mech., 42, 372 (2002)
- Brown EN, White SR, Sottos NR, J. Mater. Sci., 39(5), 1703 (2004)
- Brown EN, White SR, Sottos NR, Compos. Sci. Technol., 65, 2466 (2005)
- Brown EN, White SR, Sottos NR, Compos. Sci. Technol., 65, 2474 (2005)
- Brown EN, White SR, Sottos NR, J. Mater. Sci., 41(19), 6266 (2006)
- Mookhoek SD, Blaiszik BJ, Fischer HR, Sottos NR, White SR, van der Zwaag S, J. Mater. Chem., 18, 5390 (2008)
- Hayes SA, Jones FR, Marshiya K, Zhang W, Compos. Part A., 38, 1116 (2007)
- Hayes SA, Zhang W, Branthwaite M, Jones FR, J. R. Soc. Interface., 4, 381 (2007)
- Cho SH, Andersson HM, White SR, Sottos NR, Braun PV, Adv. Mater., 18(8), 997 (2006)
- Mookhoek SD, Mayo SC, Hughes AE, Fischer HR, Zwaag vdS, Adv. Eng. Mater., 12, 228 (2010)
- Wakabayashi K, Register RA, Macromolecules, 39(3), 1079 (2006)
- Varley RJ, van der Zwaag S, Polym. Test., 27, 11 (2008)
- Varley RJ, van der Zwaag S, Acta Mater., 56, 5737 (5750)
- Chen X, Dam MA, Ono K, Mal AK, Shen H, Nutt SR, Wudl F, Science., 295, 1698 (2002)
- Chen XX, Wudl F, Mal AK, Shen HB, Nutt SR, Macromolecules, 36(6), 1802 (2003)
- Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJ, Hirschberg JH, Lange RF, Lowe JK, Meijer EW, Science, 278(5343), 1601 (1997)
- Cordier P, Tournhilac F, Soulie-Ziakovic C, Leibler L, Nature., 451, 977 (2008)
- Dry C, Smart Mater. Struct., 3, 118 (1994)
- Dry C, Compos. Struct., 35, 263 (1996)
- Dry C, Cement. Concrete. Res., 30, 1969 (2000)
- Bleay SM, Loader CB, Hawyes VJ, Humberstone L, Curtis PT, Composites A., 32, 1767 (2001)
- Trask RS, Bond IP, Smart Mater. Struct., 15, 704 (2006)
- Trask RS, Williams GJ, Bond IP, J. R. Soc. Interface., 4, 363 (2007)
- Trask RS, Williams H, Bond IP, Bioinspir. Biomim., 2, 1 (2007)
- van der Zwaag S, “Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science,” vol. 100, Springer Series in Materials Science, Dordrecht, The Netherlands, Springer (2007)