화학공학소재연구정보센터
Materials Chemistry and Physics, Vol.122, No.2-3, 544-547, 2010
Estimating the optimal number of membrane electrode assembly catalyst layers for proton exchange membrane fuel cell by considering open circuit voltage and polarization
This paper reports on a thin polymer membrane with a self-humidifying membrane electrode assembly (MEA) using water generated from the cathode. However, the open circuit voltage was low because the activation and diffusion polarizations were high. Therefore, a multilayered MEA was prepared for a proton exchange membrane fuel cell by the screen-printing method to reduce the two polarizations and improve the open circuit voltage and power density. The MEA consists of a Nafion 115 membrane and a Vulcan XC-72 commercial catalyst (20 wt.% Pt/C) on the anode and cathode. The performances of the multilayered MEA were evaluated for the current-voltage (I-V) characteristics of single cells. In addition, the activation and diffusion polarizations and the open circuit voltage were analyzed for a prepared sample. Excellent characteristics were obtained for the MEA multilayered structure (anode: two layers; cathode: three layers). The activity of both electrodes was increased and a high power density was obtained compared to single-layered MEA. (C) 2010 Elsevier B.V. All rights reserved.