Materials Chemistry and Physics, Vol.124, No.1, 851-855, 2010
Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles
A titanium carbide coating on the surface of diamond particles was proposed to improve the interfacial bonding between diamond particles and aluminum alloy for diamond/aluminum composites. The diamond/aluminum composites with the TiC coating on diamond particles were fabricated by gas pressure infiltration. The composites were characterized with optical microscope and scanning electron microscopy and by measuring thermal properties, including thermal conductivity and coefficient of thermal expansion. The results show that the interface adhesion between the diamond particles and the aluminum matrix is strengthened due to the existence of the TiC coating, and the fracture mechanism of the composites is a combination of matrix's ductile fracture and interfacial debonding. Improvements in thermal properties, including a reduced thermal expansion and a high thermal conductivity, have been achieved by the TiC coating on diamond particles to get the good interface. (C) 2010 Elsevier B.V. All rights reserved.