화학공학소재연구정보센터
Inorganic Chemistry, Vol.35, No.11, 3394-3403, 1996
Heterogeneous Kinetics of Metal-Base and Ligand-Based Redox Reactions Within Adsorbed Monolayers
Dense monolayers of [Os(bpy)(2)py(p3p)](2+), where bpy is 2,2’-bipyridyl, py is pyridine, and p3p is 4,4’-trimethylenedipyridine, have been formed by spontaneous adsorption onto clean platinum microelectrodes. Three well-defined waves, corresponding to osmium- and bipyridyl-based redox reactions, are observed in cyclic voltammetry of these monolayers, where the supporting electrolyte is tetrabutylammonium tetrafluoroborate (TBABF(4)) dissolved in acetonitrile. These reactions correspond to the charge states 3+/2+, 2+/1+, and 1+/0, respectively. Chronoamperometry, conducted on a microsecond time scale, has been used to measure the heterogeneous electron transfer rate constant, k/s(-1), for all three redox processes. For concentrations of TBABF(4) above 0.1 M, heterogeneous electron transfer is characterized by a single unimolecular rate constant.