Separation Science and Technology, Vol.46, No.7, 1138-1143, 2011
Preparation of Core-Shell SAPO-34 Adsorbent on Ceramic Particles; Improvement of CO2 Separation from Natural Gas
Fine crystals of SAPO-34 were synthesized by preparation of sol-gel precursor and hydrothermal process. The produced crystalline phase and the crystal shapes were analyzed by XRD patterns and SEM images. The core-shell adsorbent was prepared by the formation of the fine layer of SAPO-34 on the surface of the inert ceramic particles using the same synthesis parameters and hydrothermal conditions by in situ crystallization. The prepared core-shell SAPO particles were tested in dynamic adsorption experiments of a mixture of 5% CO2 and 95% CH4 at 298K and 0.1MPa, and their performance was compared with pure powders of SAPO-34 in the same adsorption operational conditions. The longer breakthrough time, sharper breakthrough curves, and higher CO2 adsorbed amount were observed using core-shell SAPO-34 particles as adsorbent rather than using pure particles of SAPO-34. It is concluded that the production of a thin layer of SAPO-34 on cheap and inert porous ceramic particles is preferred rather than using higher amounts of SAPO-34 powders pelleted or binded with inert material in dynamic adsorption processes for the separation of CO2 from natural gas.
Keywords:CO2-CH4 separation;Core-shell adsorbent;dynamic adsorption;fine layer formation;SAPO-34 synthesis