화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.4, 438-442, August, 2011
아크릴로니트릴-부타디엔-스티렌 공중합체와 폴리유산과의 블렌드에 대한 기계적 물성 및 모폴로지
Mechanical and Morphological Properties of Poly(acrylonitrile-butadiene-styrene) and Poly(lactic acid) Blends
E-mail:
초록
본 연구에서는 poly(acrylonitrile-butadiene-styrene)(ABS)와 poly(lactic acid)(PLA)를 블렌드할 경우 상용화제의 효과에 의한 기계적 물성과 모폴로지 변화에 대하여 연구하였다. 상용화제로는 poly(styrene-acrylonitrile)-g-maleic anhydride) (SAN-g-MAH), poly(ethylene-co-octene) rubber-maleic anhydride(EOR-MAH)와 poly(ethylene-co-glycidyl methacrylate) (EGMA)를 사용하였다. ABS/PLA 블렌드의 인장강도, 굴곡강도 및 충격강도를 포함한 기계적 강도 측정 결과 SANg-MAH, EOR-MAH 그리고 EGMA 상용화제 모두 기계적 강도가 향상되는 것을 관찰할 수 있었다. 이중에서 SANg-MAH 를 사용하였을 때 가장 우수한 기계적 강도를 나타내었으며, 3 phr 함량에서 가장 높은 수치를 나타내었다. SEM 모폴로지의 경우 세 종류의 상용화제 모두 ABS/PLA 블렌드에서 PLA의 droplet 크기가 감소하는 것을 알 수 있었다. 요약하면, 블렌드의 기계적 물성과 모폴로지 측정 결과 ABS/PLA블렌드에서 세 종류의 상용화제중SAN-g-MAH (3 phr) 첨가하였을 때 가장 우수한 상용화제로서의 역할을 하는 것을 알 수 있었다.
Mechanical and morphological properties of poly(acrylonitrile-butadiene-styrene) (ABS) and poly(lactic acid) (PLA) blends containing compatibilizers were investigated. Poly(styrene-acrylonitrile)-g-maleic anhydride) (SAN-g-MAH), poly(ethylene-co-octene) rubber-maleic anhydride (EOR-MAH) and poly(ethylene-co-glycidyl methacrylate) (EGMA) were used as compatibilizers. Mechanical properties such as tensile, flexural and impact strengths of ABS/PLA (80/20, wt%) blends were found to be increased when the SAN-g-MAH, EOR-MAH and EGMA were used. The maximum values for mechanical properties of the ABS/PLA (80/20) blend were observed when SAN-g-MAH was used as a compatibilizer at the concentration of 3 phr. From morphological studies of the ABS/PLA (80/20) blends, PLA droplet size was decreased by the addition of the compatibilizers used in this study. From the results of mechanical and morphological properties of the ABS/PLA (80/20) blends, SAN-g-MAH (3 phr) was found to be the most effective compatibilizer among the compatibilizers used in this study.
  1. http://inventors.about.com/od/pstartinventions/a/plastics.htm.
  2. Christiansen WH, J. Appl.Polym. Sci., 34, 537 (1987)
  3. Jacobsen S, Fritz HG, Polym. Eng. Sci., 39, 1303 (1998)
  4. Jacobsen S, Degee PH, Fritz HG, Dubois PH, Jerome R, Polym. Eng. Sci., 39(7), 1311 (1999)
  5. Gross RA, Kalra B, Science., 297, 803 (2002)
  6. Mohanty AK, Misra M, Hinrichsen G, Macromol. Mater. Eng., 276, 1 (2000)
  7. Kim WS, Kim IH, Ha K, Seo HJ, Kang SC, J. Korean Ind. Eng. Chem., 13(8), 759 (2002)
  8. Cho K, Lee J, Xing PX, J. Appl. Polym. Sci., 83(4), 868 (2002)
  9. Matzinos P, Tserki V, Gianikouris C, Pavlidou E, Panayiotou C, Europ. Polym. J., 38, 1713 (2002)
  10. Rosa DS, Neto IC, Calil MR, Pedrodo AG, Fonseca CP, Neves S, J. Appl. Polym. Sci., 91, 3909 (2004)
  11. Kim TF, Choi CN, Kim YD, Lee KY, Lee MS, Fibers and Polymers., 5, 270 (2004)
  12. Herrera D, Zamora JC, Bello A, Grimau M, Laredo E, Muller AJ, Lodge TP, Macromolecules, 38(12), 5109 (2005)
  13. Anderson KS, Hillmyer MA, Polymer, 45(26), 8809 (2004)
  14. Singh G, Bhunia H, Rajor A, Jana RN, Choudhary V, J. Appl. Polym. Sci., 118(1), 496 (2010)
  15. Reddy N, Nama D, Yang Y, Polym.Degrad. Stab., 93, 233 (2008)
  16. Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN, Macromol. Res., 18(6), 583 (2010)
  17. Li Y, Shimizu H, Europ.Polym. J., 45, 738 (2009)
  18. Eguiburu JL, Iruin JJ, Fernandez-Berridi MJ, Roman JS, Polymer, 39(26), 6891 (1998)