화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.4, 449-455, August, 2011
수용성 고분자를 이용한 항균 필름의 제조 및 특성 연구
Preparation and Characterization of Antimicrobial Films Using Water Soluble Polymer
E-mail:
초록
본 연구에서는 폴리비닐알코올(Polyvinyl alcohol : PVA)와 메틸셀룰로오스(Methyl cellulose: MC)를 사용하여 항균성을 갖는 필름을 제조하였다. 메틸셀룰로오스와 폴리비닐알코올 필름에 항균성을 부여하기 위해 ampicillin(0.025~1 wt%)과 streptomycin(0.1~1.0 wt%)을 첨가하여 함량에 따른 기계적인 물성과 항균활성을 확인하였다. 중합도와 검화도에 따른 PVA 필름의 기계적인 물성을 보면 중합도와 검화정도에 따라 필름의 인장강도가 20.2~51.5 N/mm2이었고, 메틸셀룰로오스 필름의 경우 점도에 따라 15.44~21.70 N/mm2이었다. 사용한 균주와 항균제의 함량정도에 따라 그 기계적인 물성과 항균활성에 차이를 보였지만 함량이 늘어날수록 전체적으로 기계적인 물성은 약간 저하되는 경향을 보였지만 항균필름의 항균활성은 우수하였다. Ampicillin과 streptomycin을 사용하여 제조한 항균필름의 항균활성은 포도상 구균과 대장균을 disc diffusion test로 확인하였다. 메틸셀룰로오스와 폴리비닐알코올 필름 모두streptomycin보다 ampicillin을 함유할 때 항균활성이 우수한 경향을 보였다.
This study was performed to develop antimicrobial films using polyvinyl alcohol and methyl cellulose. Methyl cellulose and polyvinyl alcohol films plasticized with PEG(polyethylene glycol) were prepared by solvent casting process under addition of 0.025~1.0 wt% ampicillin and 0.1~1.0 wt% streptomycin as an antimicrobial agent. The mechanical properties of prepared films were examined by universal testing machine(UTM). Tensile strength of methyl cellulose films was 15.44~21.70 N/mm2. Tensile strength of PVA(15 wt%) film was 20.2~51.5 N/mm2, and the tensile strength of the antimicrobial films were decreased linearly with increasing the antibiotic loading amount up to 1 wt%. Antimicrobial activities of PVA and methyl cellulose films containing ampicillin and streptomycin through the disc diffusion test for the Staphylococcus aureus and Escherichia coli. The antimicrobial activity of methyl cellulose films and PVA containing ampicillin were higher than that of containing streptomycin methyl cellulose films. The results indicate the films may be a proper materials for antimicrobial packing applications.
  1. DeMerlis CC, Schoneker DR, Food and Chemical Toxicology., 41, 319 (2003)
  2. Young CR, Koleng JJ, McGinity JW, Inter. J. Pharma., 242, 87 (2002)
  3. Repka MA, McGinity JW, Biomaterials., 21, 1509 (2000)
  4. Kim UJ, Noriyuki I, Satoshi K, Shigenori K, Masahisa W, Ko JH, Jin HO, Polym. Degrad. Stab., Available online 27 september (2010)
  5. Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J, Int. J. Pharm., 391, 115 (2010)
  6. Zheng X, Wilkie CA, Polym. Degrad. Stab., 82, 441 (2003)
  7. Sakurada I, “Polyvinyl Alcohol Fibers,” Marcel Dekker, N.Y. (1985)
  8. Finch CA, “Polyvinyl Alcohol: Development,” John Wiley & Sons, N.Y. (1992)
  9. Tao BY, “An Overview of Biodegradable Plastics Technology and Research,” ASAE Paper No. 906609 (1990)
  10. Quattara B, Giroux M, Yefsah R, Smoragiewicz W, Saucier L, Borsa J, Lacroix M, Radiation Phys.Chem., 63, 299 (2002)
  11. An DS, Kim YM, Lee SB, Paik HD, Lee DS, Food Sci. Biotechnol., 9, 14 (2000)
  12. Chung D, Papadakis SE, Yam KL, J. Food Process. Preserv., 25, 71 (2001)
  13. Quattara B, Simard RE, Piette G, Begin A, Holley R, Inter. J. Food Microbiol., 62, 139 (2000)
  14. Chen MC, Yen GH, Chiang BJ, J. Food Process. Preserv., 20, 379 (1996)
  15. Natrajan N, Sheldon BW, J. Food Protec., 63, 1189 (2000)
  16. Natrajan N, Sheldon BW, J. Food Protec., 63, 1268 (2000)
  17. Han JH, Floros JD, J. Plastic Film Sheeting., 13, 287 (1997)
  18. Devlieghere F, Vermeiren L, Jacobs M, Debevere J, Packaging Technol. Sci., 13, 117 (2000)
  19. Amalia G, Scannell M, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK, Inter. J. Food Microbiol., 60, 241 (2000)
  20. Kim YH, Park HJ, Kim DM, Kim KH, Korean J. Food Sci. Technol., 133 (1994)