화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.9, 1859-1866, September, 2011
Renewable hydrogen production by steam reforming of glycerol over Ni/CeO2 catalyst prepared by precipitation deposition method
E-mail:
Catalytic steam reforming of glycerol for renewable hydrogen generation has been investigated over Ni/CeO2 catalyst prepared by precipitation-deposition method. The fresh and used catalysts were characterized by surface area and pore size analysis, X-ray diffraction patterns and scanning electron micrographs. Reforming experiments were carried out in a fixed bed tubular reactor at different temperatures (400-700 ℃), glycerol concentrations (5-15 wt%) and contact times. (W/FAo=2-80 g-cat·h/mol of glycerol). The investigation revealed that the Ni/CeO2 catalyst prepared by the above method is effective to produce high yield of hydrogen up to 5.6 (moles of H2/moles of glycerol fed). The formation of methane and carbon monoxide was greatly reduced over this catalyst. Significantly low amount of coke deposition was observed on the CeO2 supported catalyst. From the kinetic analysis, the activation energy for the steam reforming of glycerol was found to be 36.5 kJ/mol.
  1. Patel S, Pant KK, J. Power Sources, 159(1), 139 (2006)
  2. Patel S, Pant KK, ASME J. Fuel Cell Sci. Technol., 3, 369 (2006)
  3. Cortright RD, Davda RR, Dumesic JA, Nature., 418, 964 (2002)
  4. French R, Magrini-Bair K, Czernik S, Parent Y, Ritland M, Chornet E, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 47, 759 (2002)
  5. Villegas L, Guilhaume N, Provendier H, Daniel C, Masset F, Mirodatos C, Appl. Catal. A: Gen., 281(1-2), 75 (2005)
  6. Liu D, Kaun TD, Liao H, Ahmed S, Int. J. Hydrog. Energy., 29, 1035 (2004)
  7. Zhu J, Zhang D, King KD, Fuel., 80, 899 (2001)
  8. Zaldivar J, Nielsen J, Olsson L, Appl. Microbiol. Biotechnol., 56(1-2), 17 (2001)
  9. Faungnawakij K, Kikuchi R, Eguchi K, J. Power Sources, 161(1), 87 (2006)
  10. Faungnawakij K, Kikuchi R, Eguchi K, J. Power Sources, 164(1), 73 (2007)
  11. Czernik R, French C, Feik C, Chornet E, In Gregoire Padro CE, Lau F, Ed., Advances in Hydrogen Energy, Kluwer Academic, New York, 87 (2000)
  12. Czernik S, French R, Feik C, Chornet E, Ind. Eng. Chem. Res., 41(17), 4209 (2002)
  13. Simonetti DA, Kunkes EL, Dumesic JA, J. Catal., 247(2), 298 (2007)
  14. Dauenhauer PJ, Salge JR, Schmidt LD, J. Catal., 244, 298 (2006)
  15. Garcia L, French R, Czernik S, Chornet E, Appl. Catal. A: Gen., 201(2), 225 (2000)
  16. Byrd AJ, Pant KK, Gupta RB, Ind. Eng. Chem. Res., 46(11), 3574 (2007)
  17. Zhang B, Tang X, Li Y, Xu Y, Shen W, Int. J. Hydrog. Energy., 32, 2367 (2007)
  18. Iriondo A, Barrio VL, Cambra JF, Arias PL, Guemez MB, Sanchez-Sanchez MC, Navarro RM, Fierro JLG, Int. J. Hydrog. Energy., 35, 1162 (2010)
  19. Adhikari S, Fernando S, Haryanto A, Adhikari, Renew. Energy., 33, 1097 (2008)
  20. Zhang B, Tang X, Li Y, Cai W, Xu Y, Shen W, Catal. Commun., 6, 367 (2006)
  21. Buffoni IN, Pompeo F, Santori GF, Nichio NN, Catal. Commun., 10, 1656 (2009)
  22. Adhikari S, Fernando S, Haryanto A, Catal. Today, 129(3-4), 355 (2007)
  23. Adhikari S, Fernando S, Haryanto A, Int. J. Hydrog. Energy., 32, 2875 (2007)
  24. Guell BM, Babich I, Nichols KP, Gardeniers JGE, Lefferts L, Seshan K, Appl. Catal. B: Environ., 90(1-2), 38 (2009)
  25. Slinn M, Kendall K, Mallon C, Andrews J, J. Bioresour. Technol., 99, 5851 (2008)
  26. Byrd AJ, Pant KK, Gupta RB, Fuel., 87, 2956 (2008)
  27. Semelsberger TA, Brown LF, Borup RL, Inbody MA, Int. J. Hydrog. Energy., 29, 1047 (2004)
  28. Semelsberger TA, Borup RL, J. Power Sources., 155, 340 (2005)
  29. Lutz AE, Bradshaw RW, Bromberg L, Rabinovich A, Int. J. Hydrog. Energy., 29, 809 (2004)
  30. Kinoshita C, Turn S, Int. J. Hydrog. Energy., 28, 1065 (2003)
  31. Kang I, Bae J, Bae G, J. Power Sources, 163(1), 538 (2006)
  32. Hagh BF, Int. J. Hydrog. Energy., 28, 1369 (2003)