화학공학소재연구정보센터
Macromolecular Research, Vol.18, No.12, 1226-1232, December, 2010
A Kinetic Study of Thermal Decomposition of Glycidyl Azide Polymer (GAP)-based Energetic Thermoplastic Polyurethanes
E-mail:
Energetic thermoplastic polyurethane elastomers (ETPUs) of glycidyl azide polymer (GAP) were synthesized on GAP/poly(caprolactone)(PCL) (100/0, 50/50) as a soft segment and methylenebis(phenylisocyanate) (MDI) extended 1,5-pentanediol as a hard segment by solution polymerization in dimethyl formamide (DMF). Differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) were used to examine the thermal decomposition behavior. Kinetic analysis was performed with model fitting and a model-free method to obtain the activation energy as a function of the extent of conversion. ETPU decomposition was divided into two stages with different activation energies. The first main weight loss step corresponds to the elimination of N2 from the decomposition of -N3 bonds within azide polymers. The activation energy of the main decomposition of GAP ETPU and GAP/PCL ETPU was approximately 190 kJ/mol. The second weight loss step coincides with the decomposition of the skeleton. The activation energy of those showed an increasing trend.
  1. Stacer RG, Husband DM, PROPELLANT-EXPLOS-PYROTECH, 16, 167 (1991)
  2. Min BS, Ko SW, Macromol. Res., 15(3), 225 (2007)
  3. Kubota N, Propellants and Explosives, Weinheim, WILEYVCH, 2007.
  4. Wardle RB, US Patent 4,806,613 (1989).
  5. Allen HC, US Patent 4,361,526 (1982).
  6. Chen FT, Duo YQ, Luo SG, Luo YJ, Tan HM, PROPELLANT-EXPLOS-PYROTECH, 28(1), 7 (2003)
  7. Baoyan Z, Huimin T, Eur. Polym. J., 34, 571 (1998)
  8. Diaz E, Ampleman G, Prud’homme RE, Intern. Pyrotech. Semi., 607 (2002)
  9. Diaz E, Brousseau P, Ampleman G, Prud'homme RE, PROPELLANT-EXPLOS-PYROTECH, 28(3), 101 (2003)
  10. Ampleman G, Marois A, Desilets S, US Patent 6,479,614 (2002).
  11. Kimura E, Oyumi Y, PROPELLANT-EXPLOS-PYROTECH, 20, 322 (1995)
  12. Pisharath S, Ang HG, Polym. Degrad. Stabil., 92, 1365 (2007)
  13. Vyazovkin S, Lesnikovich A, Thermochim. Acta, 165, 273 (1990)
  14. Brill TB, Gongwer PE, Williams GK, J. Phys. Chem., 98(47), 12242 (1994)
  15. Shin SM, Kim SH, Song JK, Macromol. Res., 17(3), 149 (2009)
  16. Vyazovkin S, Dollimore D, J. Chem. Inform. Comput. Sci., 36, 42 (1996)
  17. Vyazovkin S, J. Comput. Chem., 18, 393 (1997)
  18. Vyazovkin S, J. Comput. Chem., 22, 178 (2001)
  19. Pisharath S, Ang HG, Thermochim. Acta, 459(1-2), 26 (2007)
  20. Hamid SH, Amin MB, Maadhah AG, Handbook of polymer degradation, New York, Marcer Dekker, 1992.
  21. Kubota N, Sonebe T, PROPELLANT-EXPLOS-PYROTECH, 13, 172 (1988)
  22. Herrera M, Matuschek G, Polym. Degrad. Stabil., 78, 323 (2002)
  23. Pielichowski K, Pielichowski J, Altenburg H, Balloff HJ, Thermochim. Acta, 284(2), 419 (1996)
  24. Vyazovkin S, Int. J. Chem. Kinet., 28, 95 (1996)
  25. Kubota N, Hirata N, PROPELLANT-EXPLOS-PYROTECH, 13, 65 (1988)
  26. Farber M, Harris SP, Combust. Flame, 55, 203 (1984)
  27. Zhang X, Cheng X, Proceedings of the 17th International Pyrotechnics Seminar, 1, 542 (1991).
  28. Eroglu MS, Guven O, J. Appl. Polym. Sci., 61(2), 201 (1996)
  29. Ling P, Wight CA, J. Phys. Chem. B, 101(12), 2126 (1997)