화학공학소재연구정보센터
Macromolecular Research, Vol.19, No.9, 897-903, September, 2011
Intracellular Uptake of Magnetite Nanoparticles Conjugated with RGDS-Peptide
E-mail:
Peptides containing the Arg-Gly-Asp (RGD) motif inhibit cell adhesion and exhibit a range of other biological effects including anticoagulant and antimetastatic activities. This study examined the anchorage independent effects of an RGD-containing peptide, Arg-Gly-Asp-Ser (RGDS), on NIH 3T3 fibroblasts. Magnetite nanoparticles were prepared by the coprecipitation of ferrous iron (Fe2+) and ferric iron (Fe3+) with NH4OH and dextran (DNPs). The aminosilane agent of 3-aminopropyltriethoxysilane (A) is considered to be a candidate for modification of the surface of magnetite nanoparticles (ADNPs). The amino-functionalized magnetite nanoparticles were activated using the glutaraldehyde (G) method (GADNPs). Subsequently, RGD or RGDS peptides were immobilized on the glutaraldehyde-modified magnetite nanoparticles (RGADNPs or RSGADNPs). The RSGADNPs were evaluated using Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). The biological responses of the RSGADNPs were evaluated using NIH 3T3 fibroblast cells. Inductively coupled plasma mass spectrophotometry (ICP-MS) and Prussian blue staining showed that the RSGADNPs were internalized into the NIH 3T3 cells compared to the RGADNPs. These results suggest that RSGADNP may find ever-growing applications in biological labels and detection or contrast agents in life science and medical diagnostics.
  1. Perrin-Cocon LA, Marche PN, Villiers CL, Biochem. J., 338, 123 (1999)
  2. Gupta AK, Gupta M, Biomaterials, 26, 3995 (2005)
  3. Gomez-Lopera SA, Plaza RC, Delgado AV, J. Colloid Interface Sci., 240(1), 40 (2001)
  4. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Nat. Med., 6, 351 (2000)
  5. Lao LL, Ramanujan RV, J. Mater. Sci. -Mater. Med., 15, 1061 (2004)
  6. Devaraj NK, Ong BH, Matsumoto M, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 38, 204 (2008)
  7. Gupta AK, Gupta M, Biomaterials, 26, 1565 (2005)
  8. Kim DH, Lee SH, Im KH, Kim KN, Kim KM, Shim IB, Lee MH, Lee YK, Curr. Appl. Phys., 6, e242 (2006)
  9. Berry CC, Wells S, Charles S, Curtis ASG, Biomaterials, 24, 4551 (2003)
  10. O'Brien S, Brus L, Murray CB, J. Am. Chem. Soc., 123(48), 12085 (2001)
  11. Liu C, Zou BS, Rondinone AJ, Zhang ZJ, J. Phys. Chem. B, 104(6), 1141 (2000)
  12. Wang X, Zhuang J, Peng Q, Li Y, Nature, 437, 121 (2005)
  13. El-Boubbou K, Zhu DC, Vasileiou C, Borhan B, Prosperi D, Li W, Huang XF, J. Am. Chem. Soc., 132(12), 4490 (2010)
  14. Selim KMK, Ha YS, Kim SJ, Chang Y, Kim TJ, Lee GH, Kang IK, Biomaterials, 28, 710 (2007)
  15. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC, Nano Lett., 2, 575 (2003)
  16. Karakecili AG, Demirtas TT, Satriano C, Gumusderelioglu M, Marletta G, J. Biosci. Bioeng., 104(1), 69 (2007)
  17. Berry CC, Charles S, Wells S, Dalby MJ, Curtis ASG, Int. J. Pharm., 269, 211 (2004)
  18. Gupta AK, Curtis ASG, Proceedings of the 30th Annual Symposium of Controlled Release of Bioactive Materials, 30, 788 (2003)
  19. Gupta AK, Berry C, Gupta M, Curtis A, IEEE Trans. Nanobiosci., 2, 256 (2003)
  20. Kaneo Y, Tanaka T, Nakano T, Yamaguchi Y, J. Control. Release, 70, 365 (2001)
  21. Debelle L, Tamburro AM, Int. J. Biochem. Cell Biol., 31, 261 (1999)
  22. Kamruzzaman Selim KM, Lee JH, Kim SJ, Xing Z, Kang IK, Chang Y, Guo H, Macromol. Res., 14(6), 646 (2006)
  23. Selim KKM, Park MJ, Kim HM, Kang IK, Key Eng. Mater., 342-333, 793 (2007)
  24. Shi Z, Neoh KG, Kang ET, Shuter B, Wang SC, Poh C, Wang W, Appl. Mater. Interfaces, 1, 328 (2009)
  25. Molday RS, MacKenzie D, J. Immunol. Methods, 52, 353 (1982)
  26. Hersel U, Dahmen C, Kessler H, Biomaterials, 24, 4385 (2003)
  27. Wu YL, Lim CS, Fu S, Tok AIY, Lau HM, Boey FYC, Zeng XT, Nanotechnology, 18, 215604 (2007)
  28. Ma ZY, Guan YP, Liu HZ, J. Polym. Sci. A: Polym. Chem., 43(15), 3433 (2005)
  29. Antony AC, Blood, 79, 2807 (1992)