Korean Chemical Engineering Research, Vol.49, No.5, 611-616, October, 2011
어닐링 온도에 따른 무배향 PLA 필름의 등온결정화 거동과 표면물성에 관한 연구
Study on Isothermal Crystallization Behavior and Surface Properties of Non-Oriented PLA Film with Annealing Temperature
E-mail:
초록
본 연구에서는 무배향 PLA 필름의 어닐링(annealing) 단계를 통하여 온도별 PLA 필름의 avrami 결정화 속도식을 도출하고 결정화 속도상수(k)를 비교함으로써 최적화된 어닐링 온도를 제안하였다. 120, 130, 140 ℃ 온도에서 결정화된 필름의 결정화 속도상수(k)는 각각 1.64, 1.68, 1.26이었다. 필름표면에 대한 어닐링은 필름의 표면조도와 동마찰계 수에 영향을 주는데 80, 110, 120, 130, 140 ℃의 온도조건에서 표면조도(Ra)는 각각 0.006, 0.009, 0.015, 0.027, 0.029 μm로 높아졌고 동마찰계수(μk)는 0.45, 0.43, 0.33, 0.31, 0.27로 낮아졌다. 탈크를 1, 3, 5 wt%씩 첨가하는 경우 PLA 필름의 결정화 속도상수(k)는 0.58, 0.46, 0.39로 낮아졌다.
In the study, annealing temperature was optimized by comparing with avrami crystallization rate and constant (k) using non-oriented PLA film as a base film. Crystallization rate constant of PLA film was 1.64, 1.68, and 1.26 at 120 ℃, 130 ℃, and 140 ℃, respectively. Annealing temperature was mainly affected on the surface properties such as rougnness (Ra) and kinetic friction coefficient (μk). Roughness of PLA film was 0.006 μm at 80 ℃ and increased to 0.009 μm, 0.015 μm, 0.027 μm, and 0.029 μm at 110 ℃, 120 ℃, 130 ℃ and 140 ℃, respectively. Kinetic friction coefficient decreased 0.45 to 0.43, 0.33, 0.31, 0.27 as annealing temperature was at 80 ℃, 110 ℃, 120 ℃, 130 ℃, and 140 ℃, respectivly. In addition, rate constant (k) was 0.58, 0.46, and 0.39 with adding 1 wt%, 3 wt%, and 5 wt% talc, respectively.
Keywords:Non-Oriented PLA Film;Annealing Temperature;Avrami Equation;Isothermal Crystallization Behavior;Talc
- Yoon CS, Ji DS, Text. Sci. Eng., 43(5), 235 (2006)
- Kang KS, Shin BY, Korean Chem. Eng. Res., 46(1), 124 (2007)
- Lee BI, Kim SH, Lee MS, Text. Sci. Eng., 45(5), 269 (2008)
- Li HB, Huneault MA, Polymer, 48(23), 6855 (2007)
- Harris AM, Lee EC, J. Appl. Polym. Sci., 107(4), 2246 (2008)
- Xiao H, Yang L, Ren X, Jiang T, Yeh T, Polym. Compos., 1 (2010)
- Yuksekkalayci C, Yilmazer U, Orbey N, Polym. Eng. Sci., 39(7), 1216 (1999)
- Tsai CC, Wu RJ, Cheng HY, Li SC, Siao YY, Kong DC, Jang GW, Polym. Degrad. Stabil., 95, 1292 (2010)
- Gohil RM, J. Appl. Polym. Sci., 52(7), 925 (1994)
- Yu L, Liu HS, Xie FW, Chen L, Li XX, Polym. Eng. Sci., 48(4), 634 (2008)
- Kim Y, Kim MS, Polym. Sci. Technol., 3(3), 185 (1992)
- Fakirov S, Fischer EW, Hoffmann R, Schmidt GF, Polym., 18(11), 1121 (1977)
- Rao YQ, Greener J, Avila-Orta CA, Hsiao BS, Blanton TN, Polymer, 49(10), 2507 (2008)
- Park SD, Todo M, Arakawa K, J. Mater. Sci., 39(3), 1113 (2004)
- Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP, Thermochim. Acta, 427(1-2), 117 (2005)
- Lim LT, Auras R, Rubino M, Prog. Polym. Sci., 33, 820 (2008)
- Kim HC, Lee H, Kim HY, Pak PK, Lee BO, Polym.(Korea), 23(1), 25 (1999)
- Radhakrishnan S, Sonawane PS, J. Appl. Polym. Sci., 89(11), 2994 (2003)
- Radhakrishnan S, Sonawane P, Pawaskar N, J. Appl. Polym. Sci., 93(2), 615 (2004)