화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.5, 664-668, October, 2011
염화알미늄 증기의 부분가수분해를 통한 알파 알루미나 나노입자 제조
Synthesis of α-Alumina Nanoparticles Through Partial Hydrolysis of Aluminum Chloride Vapor
E-mail:
초록
500 mL 교반탱크반응기 내에서 AlCl3 증기를 H2O 증기에 의해 부분 가수분해시켜 30~200 nm 크기의 AlOxCly(OH)z로 표시되는 구형의 알루미나 전구체 입자를 제조하였다. 반응시간, 교반속도, 반응온도가 생성된 입자의 형상, 크기 등에 미치는 영향을 조사하였다. 반응시간을 20, 60, 300 s로 변화시킨 결과 생성 입자의 형상 및 크기에 별다른 차이가 없었으며, 교반속도를 0, 300, 800 rpm으로 변화시킨 결과 0 rpm에서 입자의 크기가 최대값을 보였고, 반응온도를 180, 190, 200, 240 ℃로 변화시킨 결과 190 ℃에서 제조된 입자의 크기가 가장 작게 나타났다. 가수분해 생성물 입자를 10 ℃/min의 속도로 1,200 ℃까지 가열하고 6 시간동안 하소시켜 45 nm 크기의 α 알루미나 입자를 얻었다. 하소과정에서 인접입자 사이의 소결에 의해 입자 형상이 구형에서 벌레모양으로 변환되었다. 하소온도를 1,400 ℃로, 승온속 도를 50 ℃/min 로 증가시키고, 유지시간을 0.5 시간으로 감소시켜 급속 하소시킴으로써 인접입자의 소결을 상당히 감소시킬 수 있었다. AlCl3의 가수분해 과정에서 소량의 SiCl4 또는 TMCTS(2,4,6,8-tetramethylcylosiloxane) 첨가에 의해 인접입자의 소결 방지 효과가 나타났으나, α 결정 이외에 γ 결정, mullite 결정 등이 함께 생성되었다. 하소과정에서 AlF3를 첨가한 결과 육각형 디스크 형상의 α 알루미나 입자가 생성되었다.
Spherical alumina precursors represented by AlOxCly(OH)z, 30~200 nm in particle diameter, were prepared by partial hydrolysis of AlCl3 vapor in a 500 ml reactor. Investigated on the particle morphology and size were the effects of the reaction time, the stirring speed and the reaction temperature. The particle morphology and size was insensitive to the reaction time in the range 20 to 300 s. The variation of the stirring speed from 0 to 300 and 800 rpm showed that the particle size was the largest at 0 rpm. As the temperature was varied from 180 to 190, 200, 140 ℃, the particle size showed a maximum at 190℃. By calcination of the as-produced particles at 1,200 ℃ for 6h with a heating rate of 10 ℃/min, α-alumina particles 45 nm in surface area equivalent diameter were obtained. The particle shape after calcination turned wormlike due to sintering between neighboring particles. A rapid calcination at 1400 ℃ for 0.5 h with a higher heating rate of 50 ℃/min reduced the sintering considerably. An addition of SiCl4 or TMCTS(2,4,6,8-tetramethylcyclosiloxane) to the AlCl3 reduced the sintering effectively in the calcination step; however, peaks of γ or mullite phase appeared. An addition of AlF3 to the particles obtained from the hydrolysis resulted in a hexagonal disc shaped alumina particles.
  1. Yang RJ, Yen FS, Lin SM, Chen CC, J. Cryst. Growth, 299(2), 429 (2007)
  2. Klug J, Prochaka S, J. Am. Ceram. Soc., 70(10), 750 (1987)
  3. Okuyama K, Kousaka Y, Tohge N, Yamamoto S, Wu JJ, Flagan RC, Seinfeld JH, J. AIChE., 32(12), 2010 (1986)
  4. Carbone TJ, in LDHart(Ed.), Production Processes, Properties, and Applications for Calcined and High Purity Aluminas: Alum Chemicals, The American Ceramic Society, Inc., 99-108 (1990)
  5. Park YK, Tadd EH, Zubris M, Tannenbaum R, Mater. Res. Bull., 40, 1506 (2005)
  6. Jiang L, Yubai P, Changshu X, Qiming G, Jingkun G, Ceram. Int., 32, 587 (2006)
  7. Tok AIY, Boey FYC, Zhao XL, J. Mater. Process. Technol., 178, 270 (2006)
  8. Kilian A, Morse TF, Aerosol Sci. Technol., 34, 227 (2001)
  9. Yoo YS, Park KY, Jung KY, Cho SB, Mater. Lett., 63, 1844 (2009)
  10. Lee JW, Yoon HS, Chae US, Park HJ, Hwang UY, Park HS, Park DR, Yoo SJ, Korean Chem. Eng. Res., 43(4), 503 (2005)
  11. Park KY, Jeong J, Ind. Eng. Chem. Res., 35(11), 4379 (1996)
  12. Seo GS, Lee SG, Ahn BH, Ju CS, Hong SS, Park SS, Lee GD, Korean Chem. Eng. Res., 48(5), 627 (2010)