Inorganic Chemistry, Vol.35, No.24, 6987-6994, 1996
New Zr(6)Mte(2) (M=mn,Fe,Co,Ni,Ru,Pt), Zr6Fe0.6Se2.4, and Zr6Fe0.57S2.43 Intermetallics - Structural Links Between Binary (Zr,HF)(3)M Alloys and Porous Metal-Rich Tellurides
The synthesis of the group IV ternary chalcogenides Zr(6)MTe(2) (M = Mn, Fe, Co, Ni, Ru, Pt) and Zr(6)Fe(1-x)Q(2+x) (Q = S, Se) is reported, as are the single-crystal structures of Zr6FeTe2, Zr6Fe0.6Se2.4, and Zr6Fe0.57S2.43. The structure of Zr6FeTe2 was refined in the hexagonal space group P (6) over bar 2m (No. 189, Z = 1) with lattice parameters a = 7.7515(5) Angstrom and c = 3.6262(6) Angstrom, and the structures of Zr6Fe0.6Se2.4 and Zr6Fe0.57S2.43 were refined in the orthorhombic space group Pnnm (No. 58, Z = 4) with lattice parameters a = 12.737(2) Angstrom, b = 15.780(2) Angstrom, and c = 3.5809(6) Angstrom and a = 12.519(4) Angstrom, b = 15.436(2) Angstrom, and c = 3.4966(6) Angstrom, respectively. The cell parameters of Mn-, Co-, Ni-, Ru-, and Pt-containing tellurides were also determined. The Zr6Te2 compounds are isostructural with Zr6CoAl2, while Zr(6)Fe(1-x)Q(2+x) (Q = S, Se) were found to adopt a variant of the Ta2P-type structure. Chains of condensed M-centered, tetrakaidecahedra of zirconium constitute the basic structural unit in all these compounds. The modes of cross-linking that give rise to the Zr6FeTe2 and Zr(6)Fe(1-x)Q(2+x) structures, differences among the title compounds, and the influence of chalcogen size differences are discussed. The stoichiometric nature of Zr6FeTe2 and its contrast with sulfur and selenium congeners apparently result from a Te-Fe size mismatch. The importance of stabilization of both Zr6FeSe2 and Zr6FeTe2 compounds by polar intermetallic Zr-Fe bonding is underscored by a bonding analysis derived from electronic band structure calculations.
Keywords:STUFFED TAFE1+XTE3 STRUCTURE;LAYERED TELLURIDE;TRANSITION-METALS;ZIRCONIUM;CLUSTERS;TACO2TE2;FE2TA9S6;CO2TA9S6;HAFNIUM