화학공학소재연구정보센터
Inorganic Chemistry, Vol.35, No.25, 7211-7216, 1996
Stepwise Oxidation of Thiophene and Its Derivatives by Hydrogen-Peroxide Catalyzed by Methyltrioxorhenium(VII)
The oxidation of thiophene derivatives by hydrogen peroxide is catalyzed by methyltrioxorhenium(VII) (CH3ReO3). This compound reacts with hydrogen peroxide to form 1:1 and 1:2 rhenium peroxides, each of which transfers an oxygen atom to the sulfur atom of thiophene and its derivatives. Complete oxidation to the sulfone occurs readily by way of its sulfoxide intermediate. The rates for each oxidation step of dibenzothiophenes, benzothiophenes, and substituted thiophenes were determined. The rate constants for the oxidation of the thiophenes are 2-4 orders of magnitude smaller than those for the oxidation of aliphatic sulfides, whereas the rate constants are generally the same for the oxidation of the thiophene oxides and aliphatic sulfoxides. The rate constant for conversion of a sulfide to a sulfoxide (thiophene oxide) increases when a more electron-donating substituent is introduced into the molecule, whereas the opposite trend was found for the reaction that converts a sulfoxide to a sulfone (thiophene dioxide). Mechanisms consistent with this are proposed. The first trend reflects the attack of the nucleophilic sulfur atom of a thiophene center on a peroxide that has been electrophilically activated by coordination to rhenium. The second, more subtle, trend arises when both sulfoxide and peroxide are coordinated to rhenium; the inherently greater nucleophilicity of peroxide then takes control.