화학공학소재연구정보센터
Applied Surface Science, Vol.257, No.6, 1893-1897, 2011
Determination of photocatalytic activity in amorphous and crystalline titanium oxide films prepared using plasma-enhanced chemical vapor deposition
Hydro-oxygenated amorphous titanium oxide (a-TiOx:OH) films were prepared by plasma-enhanced chemical vapor deposition (PECVD) using precursors of titanium tetraisopropoxide (TTIP) and oxygen. The influences of chemical states and crystal quality on the photocatalytic activity were systematically investigated in the as-deposited and post-annealed films. The degree of the photocatalytic activity was deeply correlated with the porosity related to the hydroxyl (OH) groups in the as-deposited amorphous film. The crystallized anatase structures was observed from the 200 degrees C-deposited a-TiOx:OH film after a post-annealing treatment at 400 degrees C. The photocatalytic activity related to the film with anatase structure was markedly superior to that of an amorphous film with porous structures. The larger the crystal size of the anatase structure, the higher the photocatalytic activity obtained. At elevated annealed temperatures, the inferior anatase structure due to the crystalline transformation led to a low photocatalytic activity. It was concluded that the photocatalytic activity of an amorphous TiOx film prepared using PECVD was determined by the porosity originating from the functional OH groups in the film, whereas the crystalline quality of anatase phase in the annealed poly-TiOx film was crucial to the photocatalytic activity. (C) 2010 Elsevier B.V. All rights reserved.