화학공학소재연구정보센터
Applied Surface Science, Vol.257, No.8, 3451-3454, 2011
Silane effects on the surface morphology and abrasion resistance of transparent SiO2/UV-curable resin nano-composites
Transparent ultraviolet curable nano-composite coatings consisting of nano-sized SiO2 and acrylate resin have been developed to improve the abrasion resistance of organic polymers. The nano-sized SiO2 particles were surface-modified using various amounts of 3-methacryloxypropyltrimethoxysilane. The 3-methacryloxypropyltrimethoxysilane concentration effects on the surface morphology and abrasion resistance of the transparent SiO2/ultraviolet-curable resin nano-composites were investigated using scanning electron microscopy, atomic force microscopy, and ultraviolet-visible spectrophotometer. The results showed that as the 3-methacryloxypropyltrimethoxysilane/SiO2 weight ratio increased from 0.2 to 0.6, the dispersion, compatibility and cross-linking density between the 3-methacryloxypropyltrimethoxysilane- modified SiO2 particles and acrylate resin were improved, leading to an increase in abrasion resistance. However, as the 3-methacryloxypropyltrimethoxysilane/SiO2 weight ratio was increased to 1.5, the additional 3-methacryloxypropyltrimethoxysilane may exceed that needed to fill the pores with the probability of SiO2 nano-particles existing on the coating surface was lower than that for samples with a 3-methacryloxypropyltrimethoxysilane/SiO2 weight ratio of 0.6. This produced a decrease in abrasion resistance. (C) 2010 Elsevier B. V. All rights reserved.