화학공학소재연구정보센터
Applied Surface Science, Vol.257, No.14, 6175-6180, 2011
Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes
Fouling is one of the most present prominent problems in almost all membrane processes. An increase in the membrane hydrophilicity is one of the effective ways to improve the membrane resistance to fouling. In this research, TiO2 nanoparticles were deposited on the surface of composite ultrafiltration (UF) membrane, and then irradiated by ultraviolet (UV) light. The coating of the membrane surface with TiO2 nanoparticles and radiation with (UV) light led to the considerable increase of hydrophilicity on the membrane surface. The deposition of TiO2 nanoparticles was carried out through coordinance bonds with OH functional groups of the polymer on the membrane surface. The flux through a coated and (UV) light radiated membrane was increased to a large extent compared to a virgin membrane. In this research, the effect of different concentrations of TiO2 nanoparticles in the presence and absence of (UV) irradiation was investigated, and the role of increasing of hydrophilicity on the anti-fouling property of membranes was studied. In order to characterize the membranes FTIR, XRD, SEM, water contact angle and cross-flow filtration were employed. This procedure is a useful technique for improvement of hydrophilicity to decrease (increase) fouling (anti-fouling performance) and enhance the permeation of membranes. (C) 2011 Elsevier B. V. All rights reserved.