Atomization and Sprays, Vol.21, No.1, 41-67, 2011
SUBGRID ANALYSIS OF LIQUID JET ATOMIZATION
The objective of this paper is to study the feasibility of large eddy simulations (LESs) of a liquid fuel injection in combustion chambers. To do so, a priori analyses of direct numerical simulations are carried out. A complete liquid jet atomization, from the injector down to the end of the liquid core, is simulated thanks to the coupling of both level-set and volume of fluid (VOF) formulations. To avoid the apparition of a subgrid term on the right-hand side of the continuity equation, the choice was made to consider an incompressible formulation as far as the filtering operator is concerned. The corresponding LES transport equations and various subgrid contributions are thus presented. Results are first dedicated to the estimation of the various orders of magnitude of these subgrid terms. In a second part, classical eddy viscosity scale similarity models are tested against the prevalent ones. It appears that, contrary to a Smagorinslcy formulation, the scale similarity assumption provides a better estimation of the subgrid terms. This result is found for all locations that have been considered in the jet: at the injection level or in the atomized area. The major drawback is the presence of a constant that needs to be estimated. Various values are found depending on the filter size.