화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.403, No.1, 91-96, 2010
Long-term treatment of farnesyltransferase inhibitor FTI-277 induces neurotoxicity of hippocampal neurons from rat embryo in a ROS-dependent manner
Despite the well established anti-cancer effect of farnesyltransferase inhibitor FTI-277, the neurotoxic effects of the agent are not yet clearly defined at the molecular and cellular levels. Here, we report the neurotoxic effects of FTI-277 and the involvement of reactive oxygen species (ROS) in FTI-induced neurotoxicity. Although there is no significant effect of FTI-277 for 2 days, long-term treatment of FTI-277 for 4 days induced dramatic reduction in outgrowth, maturation and branching of neuritis and considerable cytoxicity in a dose- and time-dependent manner in primary cultured rat embryo hippocampal neurons. Interestingly, FTI-277 for 4 days dramatically decreased expression of synapsin I, a crucial molecule involved in the neuronal growth and plasticity, and increased a cytotoxic G-protein RhoB of which ectopic expression induced the neurotoxicity in hippocampal neurons. Moreover, treatment with FTI-277 dramatically increased intracellular levels of ROS, which was sustained for 4 days; while blockage of ROS rescued FTI-277-induced neurotoxicity as well as both decrease of synapsin I and increase of RhoB. Taken together, these results provide the molecular insights for the mechanisms which might be of use aiming for avoiding neurotoxic side effects by FTI agent for a drug development for a clinical use. (C) 2010 Elsevier Inc. All rights reserved.