Biomacromolecules, Vol.11, No.12, 3592-3599, 2010
Quantifying Osteogenic Cell Degradation of Silk Biomaterials
The degradation of silk protein films by human mesenchymal stem cells (hMSCs), osteoblasts and osteoclasts, cells involved in osteogenic functions in normal and diseased bone, was assessed in vitro. The involvement of specific matrix metalloproteinases (MMPs) and integrin signaling in the degradation process was determined. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to quantitatively compare degradation by the different cell types using surface patterned silk films. Osteoblasts and osteoclasts demonstrated significant degradation of the silk films in vitro in comparison to the hMSCs and the film controls without cells. The osteoclasts degraded the silk films the most and also generated the highest level of MMPs 1 and 2. The osteoblasts upregulated integrins alpha 5 and beta 1, while the osteoclast upregulated integrins alpha 2 and beta 1. There was significant contrast in responses on the silk matrices between osteogenic cells versus undifferentiated hMSCs to illustrate in vitro the role of cell type on matrix remodeling. These are important issues in matching biomaterial matrix features and studies in vitro to remodeling in vivo, in both normal and disease tissue systems. Cell populations and niche factors impact tissue regeneration, wound healing, physiological state, and the ability to better understand the role of different cell types is critical to overall regenerative outcomes.