화학공학소재연구정보센터
Biomacromolecules, Vol.12, No.4, 1067-1071, 2011
Passive Control of Quorum Sensing: Prevention of Pseudomonas aeruginosa Biofilm Formation by Imprinted Polymers
Here we present the first molecular imprinted polymer (MIP) that is able to attenuate the biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa through specific sequestration of its signal molecule N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C-12-AHL). The MIP was rationally designed using computational modeling, and its capacity and specificity and that of a corresponding blank polymer toward signal molecule. of P. aeruginosa (3-oxo-C-12-AHL) and its analogue were tested. The biofilm formation in the presence of polymers and without polymers was studied using scanning confocal laser microscopy. Staining with crystal violet dye was used for the quantification of the biofilm formation. A significant reduction of the biofilm growth was observed in the presence of MIP (> 80%), which was superior to that of the resin prepared without template, which showed a reduction of 40% in comparison with biofilm, which was grown without polymer addition. It was shown that 3-oxo-C-12-AHL-specific MIP prevented the development of quorum-sensing-controlled phenotypes (in this case,,biofilm formation) from being up-regulated. The developed MIP could be considered as a new tool for the elimination of life-threatening infections in a multitude of practical applications; it could, for example, be grafted on the surface of medical devices such as catheter's and-lenses, be a component of paints, or be used as a wound adsorbent.