Biomass & Bioenergy, Vol.35, No.1, 464-472, 2011
Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process
The adsorption of Cu(II) from aqueous solution by carbons prepared from rice husk through pyrolysis and steam activation was studied. The rice husk carbon was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and its pore structure was also examined. After comparing different characteristics of the carbons prepared under different conditions and their adsorption abilities of Cu(II), the optimum temperature for pyrolysis and steam activation was chosen as 700 and 750 degrees C, respectively, using 3% (V/V) steam as the best activation gas. It was found that the Cu(II) adsorption on the rice husk derived carbons was pH and temperature dependent with an optimum pH value of 5.0, and an equilibrium time of 24 h. The adsorption kinetics and isotherms of Cu(II) by the rice husk derived carbons were also investigated under four different temperatures, and good correlation coefficients were obtained for the pseudo-second-order kinetic models, and the Langmuir isotherm model fitted very well with the experimental data. The mean free energy E (kJ mol(-1)) obtained in the Dubinin-Radushkevitch (D-R) adsorption isortherm equation indicated a chemical ion-exchange mechanism. Several thermodynamic parameters were also caculated to predict the nature of adsorption process. (C) 2010 Elsevier Ltd. All rights reserved.