화학공학소재연구정보센터
Biomass & Bioenergy, Vol.35, No.3, 999-1007, 2011
Wood would burn
In view of the world-wide problem of energy sustainability and greenhouse gas production (carbon dioxide), it is timely to review the issues involved in generating heat and power from all fuels and especially new (to the UK) solid fuels, including high moisture fuels such as wood, SRF, oil shale, tar sands and brown coal, which will become major international fuels as oil and gas become depleted. The combustion properties of some of these materials are significantly different from traditional coal, oil and gas fuels, however the technology proposed herein is also applicable to these conventional fuels. This paper presents some innovative combustion system options and the associated technical factors that must be considered for their implementation. For clarity of understanding, the novel concepts will be largely presented in terms of a currently developing solid fuel market; biomass wood chips. One of the most important characteristics of many solid fuels to be used in the future (including oil shale and brown coal) is their high moisture content of up to 60%. This could be removed by utilising low grade waste heat that is widely available in industry to dry the fuel and thus reduce transport costs. Burning such dried wood for power generation also increases the energy available from combustion and thus acts as a thermal transformer by upgrading the low grade heat to heat available at combustion temperatures. The alternative approach presented here is to recover the latent heat by condensing the extrinsic moisture and the water formed during combustion. For atmospheric combustion, the temperature of the condensed combustion products is below the dew point at about 55-65 degrees C and is only suitable for recovery in an efficient district heating system. However, in order to generate power from the latent heat, the condensation temperature must be increased to the level where the heat can be used in the thermodynamic power cycle. This can be achieved by increasing the combustion pressure to above 80 bar, resulting in the recovered latent heat being available at more than 200 degrees C. It can then be used to increase the cycle efficiency by about 15% by pre-heating the boiler water and/or combustion air etc. A further advantage is that the high pressure of the combustion gases also reduces the superheater tube stress since it can balance the steam pressure. The key advantage of this high pressure flue gas is that it is above the pressure at which carbon dioxide 'condenses' to a liquid or supercritical gas at atmospheric temperature. Thus when used with oxy-fuel combustion, the carbon dioxide flue gas from which the moisture has been condensed can be cooled to atmospheric temperature and the supercritical CO2 can be fed directly into the pipes leading to the sequestration site. An important consideration of these strategies is to ensure that non-condensable gases in the exhaust, including oxygen and nitrogen, do not adversely affect the 'condensation' processes. When oxy-fuel combustion is used, the flame temperature must be moderated by a cool diluent. Recycled carbon dioxide is often proposed for this duty. However, since the latent heat is recovered, the moisture or even additional water can fulfil this role. This latter option may be advantageous since it is more efficient to pump wood chip fuel in water into the high pressure zone rather than feed solid wood particles. Surplus water can be simply drained and the wet wood chips are a good fuel when the latent heat of the moisture in the fuel gases is recovered into the power cycle. Bearing in mind that it is much more efficient to pump a liquid to high pressure than to compress the same material as a gas, indicates that cryogenic oxygen is a suitable material to use for an efficient power station that generates energy from biomass (or other fuels such as coal etc). Finally, combustion of the hydrogen from the water-gas reaction with oxygen allows the steam temperature in the turbine to be increased to the "gas-turbine engine" range of 1000-1400 degrees C and hence the biomass and/or fossil fuel cycle efficiency can be well over 60%! (C) 2010 Elsevier Ltd. All rights reserved.