화학공학소재연구정보센터
Biomass & Bioenergy, Vol.35, No.3, 1075-1084, 2011
Glycerol oxidation in solid oxide fuel cells based on a Ni-perovskite electrocatalyst
An investigation of the electrochemical oxidation of glycerol as alternative to hydrogen and methane in solid oxide fuel cells (SOFCs) based on a noble metal-free anode catalyst was carried out. The anode electrocatalyst consisted of a Ni-modified La0.6Sr0.4Fe0.8Co0.2O3 (LSFCO) perovskite. After thermal activation, air treatment at 1100 degrees C followed by reduction at 800 degrees C in H-2, Ni was mainly present as ultrafine La2NiO4 particles homogeneously dispersed on the perovskite surface. The thermal activation also caused a modification of perovskite into a lanthanum depleted structure. The thermal reduction at 800 degrees C determined the occurrence of metallic Ni on the surface. These results were corroborated by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). A suitable power density (327 mW cm (2)) was achieved for the electrolyte supported SOFC fed with chemical-grade glycerol in almost dry condition, i.e. steam to carbon ratio (S/C) of 0.2. The highest electrical efficiency (voltage efficiency) approached 50% at the peak power under mild humidification (S/C = 0.2). Whereas an increase of water to glycerol ratio, caused a progressive decrease of voltage efficiency at the peak power down to 44% for S/C = 2. (C) 2010 Elsevier Ltd. All rights reserved.