화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.22, No.5, 447-452, October, 2011
바이오에너지 및 바이오화학원료인 C4-C6 생산
Production of C4-C6 for Bioenergy and Biomaterials
E-mail:
초록
석유자원의 고갈이 에너지 및 화학원료물질로 재생 가능한 바이오매스의 이용성을 증가시키고 있다. 본 총설에서는 바이오에너지 및 바이오화학원료인 C4-C6 생산에 관해 논하고자 한다. 주요한 C4 물질인 n-butanol과 n-butyric acid를 다량 생산하는 미생물은 Clostridium tyrobutyricum, Clostridium beijerinckii, Clostridium acetobutylicum이다. 대표적인 C6 물질인 n-hexanoic acid는 Clostridium kluyveri와 Megasphaera elsdenii가 다량 생산한다. 미생물 발효에 의해 보고된 n-butanol, n-butyric acid, n-hexanoic acid의 최대 생산량은 각각 21, 55, 19 g/L이었다. 배양과정에서 이들 생산물의 제거 는 최종산물억제의 감소로 미생물에 의한 n-butanol, n-butyric acid, n-hexanoic acid의 생산량을 증가시켰다. 특히 C6 물질인 n-hexanoic acid는 n-hexanol로 될 수 있는 고 부가가치 물질로 생물학적 생산 연구가 꾸준히 진행 중인데, 신규한 미생물인 Clostridium sp. BS1은 galactitol을 이용하여 5 g/L의 n-hexanoic acid를 생산하였다.
Depletion of petroleum increased the need of alternative energy and chemical resources. Biomass, a renewable resource, can be transformed to bioenergy and biomaterials, and the materials from biomass will ultimately substitute petroleum based energy and chemical compounds. In this perspective, production of C4-C6 compounds for bioenergy and biomaterials are described for understating of current research progress. n-Butanol and n-butyric acid, the major C4 compounds, are produced by Clostridium tyrobutyricum, Clostridium beijerinckii, and Clostridium acetobutylicum. n-Hexanoic acid, a typical C6 compound, is produced by Clostridium kluyveri and Megasphaera elsdenii. Reported maximum amount of n-butanol, n-butyric acid and n-hexanoic acid was 21, 55, and 19 g/L, respectively, and extraction of these C4-C6 compounds are induced increase production by those anaerobic bacteria. In addition, a new bacterium Clostridium sp. BS-1 produced 5 g/L of n-hexanoic acid using galactitol.
  1. Kleinert M, Barth T, Energy Fuels, 22(2), 1371 (2008)
  2. Parikka M, Biomass Bioenerg., 27(6), 613 (2004)
  3. Chum HL, Overend RP, Advances in Solar Energy: an Annual Review, ed. Goswami Y, 83, American Solar Energy Society, Boulder (2003)
  4. Forward P, Food Bureau, Market and Industry Services Branch, Dept of Agriculture and Agri-Food, Ottawa (1994)
  5. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Jr., Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T, Science., 311, 484 (2006)
  6. Kim BH, Gadd GM, Bacterial physiology and metabolism Cambridge University Press, Cambridge (2008)
  7. Lee SM, Cho MO, Park CH, Chung YC, Kim JH, Sang BI, Um Y, Energy Fuels, 22(5), 3459 (2008)
  8. Formanek J, Mackie R, Blaschek HP, Appl. Environ. Microbiol., 63, 2306 (1997)
  9. Wilkinson SR, Young M, J. Bacteriol., 177, 439 (1995)
  10. Milne CB, Eddy JA, Raju R, Ardekani S, Kim PJ, Senger RS, Jin YS, Blaschek HP, Price ND, BMC Syst. Biol., 5, 130 (2011)
  11. Survase SA, Jurgens G, van Heiningen A, Granstrom T, Appl. Microbiol. Biotechnol., 91(5), 1305 (2011)
  12. Guo T, Tang Y, Xi YL, He AY, Sun BJ, Wu H, Liang DF, Jiang M, Ouyang PK, Biotechnol. Lett., doi: 10.1007/s10529-011-0702-9 (2011)
  13. Jones DT, Woods DR, Microbiol. Rev., 50, 484 (1986)
  14. Lee J, Yun H, Feist AM, Palsson BO, Lee SY, Appl. Microbiol. Biotechnol., 80(5), 849 (2008)
  15. Michel-Savin D, Marchal R, Vandecasteele JP, Appl. Microbiol. Biotechnol., 34, 172 (1990)
  16. Michel-Savin D, Marchal R, Vandecasteele JP, Appl.Microbiol. Biotechnol., 33, 127 (1990)
  17. Wu ZT, Yang ST, Biotechnol. Bioeng., 82(1), 93 (2003)
  18. Mitchell RJ, Kim JS, Jeon BS, Sang BI, Bioresour. Technol., 100, 5352 (2009)
  19. Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z, Bioresour. Technol., 100, 3403 (2009)
  20. Sauer ET, Kirk-Othmer encyclopedia of chemical technology, ed. Howe-Grant M, 179, Wiley-Interscience, New York (1992)
  21. Budavari S, The Merck index: an encyclopedia of chemicals, drugs, and biologics, Merck, Rahway (1989)
  22. Levy PF, Sanderson JE, Ashare E, Riel SRD, CRC liquid fuels developments, ed. Wise DL, 159, CRC Boca Raton, Fla (1983)
  23. Levy PF, Sanderson JE, Ashare E, Wise DL, Molyneaux MS, Liquid fuels production from biomass. US Department of Energy, Washington (1980)
  24. Levy PF, Sanderson JE, Kispert RG, Wise DL, Enzyme. Microb. Technol., 3, 207 (1981)
  25. Barker HA, Taha SM, J. Bacteriol., 43, 347 (1942)
  26. Kohlmiller EF, Jr. Gest H, J. Bacteriol., 61, 269 (1951)
  27. Rosenberger RF, Ph. Dissertation D, Edinburgh University, Edinburgh (1952)
  28. Holdeman LV, Cato EP, Moore WEC, Anaerobe laboratory manual, 4th, Virginia Polytechnic Institute and State University, Blacksburg (1977)
  29. Genthner BR, Davis CL, Bryant MP, Appl. Environ. Microbiol., 42, 12 (1981)
  30. Gutierrez J, Davis RE, Lindahl IL, Warwick EJ, Appl. Microbiol., 7, 16 (1959)
  31. Giesecke D, Wiesmayr S, Ledinek M, J. Gen. Microbiol., 64, 123 (1970)
  32. Rogosa M, Int. J. Syst. Bacteriol., 21, 187 (1971)
  33. Roddick FA, Britz ML, VIIth Australian Biotechnology Conference Melbourne, 386 (1986)
  34. Bryant MP, Robinson IM, J. Bacteriol., 84, 605 (1962)
  35. Hino T, Miyazaki K, Kuroda S, J. Gen. Appl. Microbiol., 37, 121 (1991)
  36. Marx H, Graf AB, Tatto NE, Thallinger GG, Mattanovich D, Sauer M, J. Bacteriol., 193, 5578 (2011)
  37. Herrero AA, Trends Biotechnol., 1, 49 (1983)
  38. Roddick FA, Britz ML, J. Chem. Technol. Biotechnol., 69(3), 383 (1997)
  39. Kenealy WR, Waselefsky DM, Arch Microbiol., 141, 187 (1985)
  40. Kenealy WR, Cao Y, Weimer PJ, Appl. Microbiol. Biotechnol., 44(3-4), 507 (1995)
  41. Shi Y, Weimer PJ, Appl. Environ. Microbiol., 58, 2583 (1992)
  42. Weimer PJ, Arch. Microbiol., 160, 288 (1993)
  43. Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ, Bioresour. Technol., 100, 6658 (2009)
  44. Jeon BS, Kim BC, Um Y, Sang BI, Appl. Microbiol. Biotechnol., 88(5), 1161 (2010)
  45. Smith MV, Pierson MD, Appl. Environ. Microbiol., 37, 978 (1979)
  46. Bar R, Gainer JL, Biotechnol. Progr., 3, 109 (1987)
  47. WEILNHAMMER C, BLASS E, Chem. Eng. Technol., 17(6), 365 (1994)
  48. Basu R, Sirkar KK, AIChE J., 37, 383 (1991)
  49. Basu R, Sirkar KK, J. Membr. Sci., 75, 131 (1992)