Applied Chemistry for Engineering, Vol.22, No.5, 526-531, October, 2011
알칼리금속을 함침시킨 아미노산 염 수용액의 이산화탄소 흡수특성 연구
CO2 Absorption by Alkali-modified Amino Acid Salts
E-mail:,
초록
본 연구는 이산화탄소 흡수성능을 향상시키기 위하여 아미노산에 알칼리금속을 함침시키는 것이다. 사용된 아미노산은 글리신이었으며, 알칼리성분 추가에 따라 pH가 11까지 증가하였다. 시험제조한 아미노산 염은 회분식과 연속식 흡수공정에서 이산화탄소의 포집능을 평가하였다. 치환된 금속종류에 따른 이산화탄소 흡수량은 Sodium Glycinate(Na-Gly) ≥ Lithium Glycinate (Li-Gly) > Potassium Glycinate (K-Gly) 순으로 나타났다. 흡수반응온도에 따른 CO2 흡수량 시험결과, 20 ℃에서는 알칼리금속을 함침시킨 아미노산 염이 1차 아민보다 약간 낮은 흡수능을 보였으나, 연속식 흡수반응기에서는 10% CO2 흐름에 대하여 반응기 내부온도가 상승하면서(40 ℃, 60 ℃) 아미노산 염의 흡수량 증가폭
이 아민에 비하여 상대적으로 크게 나타났다.
The present study attempted to impregnate alkali metals to amino acid in order to improve CO2 absorption capacity. A used amino acid was glycine, of which pH increased up to about 11 with the addition of alkalies. CO2 absorption capacity of amino acid salts was evaluated in a batch and a continuous process. The absorption capacity appeared in turns as; Sodium Glycinate ≥ Lithium Glycinate > Potassium Glycinate. Amino acid salts showed lower absolute capacity of CO2 absorption than primary amine (Monoethanolamine) at 20 ℃. In a continuous absorption with 10% CO2 flow, the increasing the reaction temperature, the increasing rate of absorption for amino and was higher that of than amino absorbent.
- Jang WJ, Yoon YI, Park SD, Rhee YW, Baek IH, J. Korean Ind. Eng. Chem., 19(6), 645 (2008)
- Ryu WJ, Han KH, Choi WK, Lee JS, Park SJ, Korean Chem. Eng. Res., 47(6), 795 (2009)
- Lim YH, Lee KM, Lee HS, Jo YM, J. KOSAE., 26, 286 (2010)
- Ma'mun S, Svendsen HF, Hoff KA, Juliussen O, Energy Conv. Manag., 48(1), 251 (2007)
- Lee IH, Kim SY, Park JY, J. Korean Ind. Eng. Chem., 18(3), 239 (2007)
- Pintola T, Tontiwachwuthikul P, Meisen A, Gas Sep. Purif., 7, 47 (1993)
- Cho Y, Nam SC, Yoon YI, Moon S, Baek IH, Appl. Chem. Eng., 21(2), 195 (2010)
- Song HJ, Lee SM, Song HC, Ahn SW, Park JW, J. Energy Eng., 14, 219 (2005)
- Strazisar BR, Anderson RR, White CM, Energy Fuels, 17(4), 1034 (2003)
- Aronu UE, Svendsen HF, Hoff KA, Int. J. Greenhouse Gas Control., 4, 771 (2010)
- Kumar PS, Hogendoorn JA, Versteeg GF, Feron PHM, AIChE J., 49(1), 203 (2003)
- Song HJ, Lee SM, Lee JH, Park JW, Jang KR, Shim JG, Kim JH, Korean Soc. Environ. Eng., 31, 505 (2009)
- van Hoist J, Versteeg GF, Brilman DWF, Hogendoorn JA, Chem. Eng. Sci., 64(1), 59 (2009)
- Oh SK, Rhee YW, Nam SC, Yoon YI, Kim YE, J. Energy Eng., 17, 251 (2008)
- McKee T, McKee JR, Biochemistry, 3/E, 80pp, Life Science Publishing Co. (2004)
- Wade LG, Jr., Organic Chemistry, 1299pp, Prentice Hall (2001)
- Ko HW, Juang HK, J. Appl. Electrochem., 13, 725 (1983)
- Hook RJ, Ind. Eng. Chem. Res., 36(5), 1779 (1997)
- Holst JV, Kersten SRA, Hogendoorn KJA, J. Chem. Eng. Data., 53, 1286 (2008)
- Mathonat C, Majer V, Mather AE, Grolier JPE, Fluid Phase Equilib., 140, 170 (1997)
- Ahn SW, Kim YK, Song HC, Park JW, Energy Eng. J., 6, 203 (1997)