화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.2, 243-248, February, 2012
Morphology-controlled Synthesis of CuO nano- and microparticles using microwave irradiation
E-mail:
Microwave irradiation was used to obtain a variety of CuO crystal morphologies, including leaf-like, dandelion-like, and hollow structures. The morphology of the CuO crystals was controlled by varying the alkali source (NaOH, hexamethylenetetramine, ammonia, or urea) and heating at 95 ℃ for 1 hr. The X-ray diffraction patterns of as-prepared CuO crystals were consistent with high quality crystals with a monoclinic crystal structure. Field emission scanning electron microscopy (FE-SEM) and tunneling electron microscopy (TEM) images of CuO crystals revealed that the leaf-like CuO crystals had an average length of 950 nm and width of 450 nm, the small leaf-like CuO crystals had an average length of 450 nm and width of 200 nm, the dandelion-like CuO structures had an average diameter of 2 m, and the hollow CuO structures had an average diameter 2 m. Possible mechanisms for structure formation during the shape-selective CuO synthesis were proposed based on these results.
  1. Musa AO, Akomolafe T, Carter MJ, Sol. Energy Mater. Sol. Cells, 51(3), 305 (1998)
  2. Reitz JB, Solomon EI, J. Am. Chem. Soc., 120(44), 11467 (1998)
  3. Baik NS, Sakai G, Miura N, Yamazoe N, J. Am. Ceram. Soc., 83(12), 2983 (2000)
  4. Chowdhuri A, Gupta V, Sreenivas K, Appl. Phys. Lett., 84, 1180 (2004)
  5. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, J. Am. Ceram. Soc., 80, 3157 (1997)
  6. MacDonald AH, Nature., 414, 409 (2001)
  7. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature., 407, 496 (2000)
  8. Hsieh CT, Chen JM, Lin HH, Shih HC, Appl. Phys. Lett., 83, 3383 (2003)
  9. Forsyth JB, Brown PJ, Wanklyn BM, J. Phys. C: Solid State Phys., 21, 2917 (1988)
  10. Yang BX, Thurston TR, Tranquada JM, Shirane G, Phys. Rev. B., 39, 4343 (1989)
  11. Sukhorukov YP, Loshkareva NN, Samokhvalov AA, Naumov SV, Moskvin AS, Ovchinnikov AS, J. Magn. Magn. Mater., 183, 356 (1998)
  12. Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW, Phys. Rev. Lett., 58, 908 (1987)
  13. Zheng XG, Xu CN, Tomokiyo Y, Tanaka ET, Yamada H, Soejima Y, Phys. Rev. Lett., 85, 5170 (2000)
  14. Park JC, Kim J, Kwon H, Song H, Adv. Mater., 21(7), 803 (2009)
  15. Xiao HM, Fu SY, Zhu LP, Li YQ, Yang G, Eur. J. Inorg.Chem., 1966 (2007)
  16. Du GH, Van Tendeloo G, Chem. Phys. Lett., 393(1-3), 64 (2004)
  17. Zhang YG, Wang ST, Li XB, Chen LY, Qian YT, Zhang ZD, J. Cryst. Growth, 291(1), 196 (2006)
  18. Li S, Zhang H, Ji Y, Yang D, Nanotechnology., 15, 1428 (2004)
  19. Liu Y, Chu Y, Zhuo Y, Li M, Li L, Dong L, Cryst. Growth Design., 7, 3 (2007)
  20. Zhang M, Xu X, Zhang M, Mater. Lett., 62, 385 (2008)
  21. Zhang Y, Wing S, Wang X, Cui T, Cui W, Zhang Y, Zhang Z, Eur. J. Inorg. Chem., 168 (2009)
  22. Li F, Tao K, Wentuan BA, Li DC, Li Z, Huang XT, Appl. Surf. Sci., 255(12), 6279 (2009)
  23. Wang SQ, Zhang JY, Chen CH, Script. Mater., 57, 337 (2007)
  24. Hu Y, Huang X, Wang K, Liu J, Jiang J, Ding R, Ji X, Li X, J. Solid State Chem., 183, 662 (2010)
  25. Zhu J, Qian X, J. Solid State Chem., 183, 1632 (2010)
  26. Jia W, Reitz E, Shimpi P, Rodriguez EG, Gao PX, Lei Y, Mater. Res. Bull., 44, 1681 (2009)
  27. Chen JT, Zhang F, Wang J, Zhang GA, Miao BB, Fan XY, Yan D, Yan PX, J. Alloys and Compounds., 454, 268 (2009)
  28. Barreca D, Gasparotto A, Maccato C, Tondello E, Lebedev OI, Tendeloo GV, Cryst. Growth Design., 9, 2471 (2009)
  29. Kaur M, Muthe KP, Despande SK, Choudhury S, Singh JB, Verma N, Gupta SK, Yakhmi JV, J. Cryst. Growth, 289(2), 670 (2006)
  30. Zhang XJ, Zhang DG, Ni XM, Zheng HG, Solid-State Electron., 52(2), 245 (2008)
  31. Lu CH, Qi LM, Yang JH, Zhang DY, Wu NZ, Ma JM, J. Phys. Chem. B, 108(46), 17825 (2004)
  32. Kumar RV, Elgamiel R, Diamant Y, Gedanken A, Norwig J, Langmuir, 17(5), 1406 (2001)
  33. Xiao HM, Fu SY, Zhu LP, Li YQ, Yang G, Eur. J. Inorg.Chem., 1966 (2007)
  34. Cho S, Jung SH, Lee KH, J. Phys. Chem. C., 112, 12769 (2008)
  35. Loupy A, Perreux L, Microwaves in organic synthesis, Wiley-VCH, Weinheim, Germany (2002)
  36. Thostenson ET, Chou TW, Composites: Part A., 30, 1055 (1999)
  37. Das S, Mukhopadhyay AK, Datta S, Basu D, Bull. Mater.Sci., 32, 1 (2009)
  38. Wang S, Xu H, Qian L, Jia X, Wang J, Liu Y, Tang W, J.Solid State Chem., 182, 1088 (2009)
  39. Yang SY, Wang CF, Chen L, Chen S, Mater. Chem. Phys., 120(2-3), 296 (2010)
  40. Zhang Y, Wang S, Qian Y, Zhang Z, Solid State Sci., 8, 462 (2006)
  41. Gao S, Yang S, Shu J, Zhang S, Li Z, Jiang K, J. Phys. Chem.C., 112, 19324 (2008)
  42. Yin YD, Lu Y, Gates B, Xia YN, Chem. Mater., 13, 1146 (2001)
  43. Ohmori M, Matijevic E, J. Colloid Interface Sci., 150, 594 (1992)
  44. Du GH, Van Tendeloo G, Chem. Phys. Lett., 393(1-3), 64 (2004)
  45. Lu CH, Qi LM, Yang JH, Zhang DY, Wu NZ, Ma JM, J. Phys. Chem. B, 108(46), 17825 (2004)
  46. Zhang ZP, Sun HP, Shao XQ, Li DF, Yu HD, Han MY, Adv. Mater., 17(1), 42 (2005)
  47. Dreyfors JM, Jones SB, Sayed Y, Am. Ind. Hyg. Assoc. J., 50, 579 (1989)
  48. Trevani LN, Roberts JC, Tremaine PR, J. Solution Chem., 30, 585 (2001)
  49. Norkus E, Vaskelis A, Polyhedron., 13, 3041 (1994)
  50. Sahu JN, Mahalik KK, Patwardhan AV, Meikap BC, J. Hazard. Mater., 164(2-3), 659 (2009)
  51. Mavis B, Akinc M, J. Am. Ceram. Soc., 89(2), 471 (2006)
  52. Henrist C, Traina K, Hubert C, Toussaint G, Rulmont A, Cloots R, J. Cryst. Growth, 254(1-2), 176 (2003)