Korean Journal of Chemical Engineering, Vol.29, No.2, 243-248, February, 2012
Morphology-controlled Synthesis of CuO nano- and microparticles using microwave irradiation
E-mail:
Microwave irradiation was used to obtain a variety of CuO crystal morphologies, including leaf-like, dandelion-like, and hollow structures. The morphology of the CuO crystals was controlled by varying the alkali source (NaOH, hexamethylenetetramine, ammonia, or urea) and heating at 95 ℃ for 1 hr. The X-ray diffraction patterns of as-prepared CuO crystals were consistent with high quality crystals with a monoclinic crystal structure. Field emission scanning electron microscopy (FE-SEM) and tunneling electron microscopy (TEM) images of CuO crystals revealed that the leaf-like CuO crystals had an average length of 950 nm and width of 450 nm, the small leaf-like CuO crystals had an average length of 450 nm and width of 200 nm, the dandelion-like CuO structures had an average diameter of 2 m, and the hollow CuO structures had an average diameter 2 m. Possible mechanisms for structure formation during the shape-selective CuO synthesis were proposed based on these results.
- Musa AO, Akomolafe T, Carter MJ, Sol. Energy Mater. Sol. Cells, 51(3), 305 (1998)
- Reitz JB, Solomon EI, J. Am. Chem. Soc., 120(44), 11467 (1998)
- Baik NS, Sakai G, Miura N, Yamazoe N, J. Am. Ceram. Soc., 83(12), 2983 (2000)
- Chowdhuri A, Gupta V, Sreenivas K, Appl. Phys. Lett., 84, 1180 (2004)
- Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, J. Am. Ceram. Soc., 80, 3157 (1997)
- MacDonald AH, Nature., 414, 409 (2001)
- Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature., 407, 496 (2000)
- Hsieh CT, Chen JM, Lin HH, Shih HC, Appl. Phys. Lett., 83, 3383 (2003)
- Forsyth JB, Brown PJ, Wanklyn BM, J. Phys. C: Solid State Phys., 21, 2917 (1988)
- Yang BX, Thurston TR, Tranquada JM, Shirane G, Phys. Rev. B., 39, 4343 (1989)
- Sukhorukov YP, Loshkareva NN, Samokhvalov AA, Naumov SV, Moskvin AS, Ovchinnikov AS, J. Magn. Magn. Mater., 183, 356 (1998)
- Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW, Phys. Rev. Lett., 58, 908 (1987)
- Zheng XG, Xu CN, Tomokiyo Y, Tanaka ET, Yamada H, Soejima Y, Phys. Rev. Lett., 85, 5170 (2000)
- Park JC, Kim J, Kwon H, Song H, Adv. Mater., 21(7), 803 (2009)
- Xiao HM, Fu SY, Zhu LP, Li YQ, Yang G, Eur. J. Inorg.Chem., 1966 (2007)
- Du GH, Van Tendeloo G, Chem. Phys. Lett., 393(1-3), 64 (2004)
- Zhang YG, Wang ST, Li XB, Chen LY, Qian YT, Zhang ZD, J. Cryst. Growth, 291(1), 196 (2006)
- Li S, Zhang H, Ji Y, Yang D, Nanotechnology., 15, 1428 (2004)
- Liu Y, Chu Y, Zhuo Y, Li M, Li L, Dong L, Cryst. Growth Design., 7, 3 (2007)
- Zhang M, Xu X, Zhang M, Mater. Lett., 62, 385 (2008)
- Zhang Y, Wing S, Wang X, Cui T, Cui W, Zhang Y, Zhang Z, Eur. J. Inorg. Chem., 168 (2009)
- Li F, Tao K, Wentuan BA, Li DC, Li Z, Huang XT, Appl. Surf. Sci., 255(12), 6279 (2009)
- Wang SQ, Zhang JY, Chen CH, Script. Mater., 57, 337 (2007)
- Hu Y, Huang X, Wang K, Liu J, Jiang J, Ding R, Ji X, Li X, J. Solid State Chem., 183, 662 (2010)
- Zhu J, Qian X, J. Solid State Chem., 183, 1632 (2010)
- Jia W, Reitz E, Shimpi P, Rodriguez EG, Gao PX, Lei Y, Mater. Res. Bull., 44, 1681 (2009)
- Chen JT, Zhang F, Wang J, Zhang GA, Miao BB, Fan XY, Yan D, Yan PX, J. Alloys and Compounds., 454, 268 (2009)
- Barreca D, Gasparotto A, Maccato C, Tondello E, Lebedev OI, Tendeloo GV, Cryst. Growth Design., 9, 2471 (2009)
- Kaur M, Muthe KP, Despande SK, Choudhury S, Singh JB, Verma N, Gupta SK, Yakhmi JV, J. Cryst. Growth, 289(2), 670 (2006)
- Zhang XJ, Zhang DG, Ni XM, Zheng HG, Solid-State Electron., 52(2), 245 (2008)
- Lu CH, Qi LM, Yang JH, Zhang DY, Wu NZ, Ma JM, J. Phys. Chem. B, 108(46), 17825 (2004)
- Kumar RV, Elgamiel R, Diamant Y, Gedanken A, Norwig J, Langmuir, 17(5), 1406 (2001)
- Xiao HM, Fu SY, Zhu LP, Li YQ, Yang G, Eur. J. Inorg.Chem., 1966 (2007)
- Cho S, Jung SH, Lee KH, J. Phys. Chem. C., 112, 12769 (2008)
- Loupy A, Perreux L, Microwaves in organic synthesis, Wiley-VCH, Weinheim, Germany (2002)
- Thostenson ET, Chou TW, Composites: Part A., 30, 1055 (1999)
- Das S, Mukhopadhyay AK, Datta S, Basu D, Bull. Mater.Sci., 32, 1 (2009)
- Wang S, Xu H, Qian L, Jia X, Wang J, Liu Y, Tang W, J.Solid State Chem., 182, 1088 (2009)
- Yang SY, Wang CF, Chen L, Chen S, Mater. Chem. Phys., 120(2-3), 296 (2010)
- Zhang Y, Wang S, Qian Y, Zhang Z, Solid State Sci., 8, 462 (2006)
- Gao S, Yang S, Shu J, Zhang S, Li Z, Jiang K, J. Phys. Chem.C., 112, 19324 (2008)
- Yin YD, Lu Y, Gates B, Xia YN, Chem. Mater., 13, 1146 (2001)
- Ohmori M, Matijevic E, J. Colloid Interface Sci., 150, 594 (1992)
- Du GH, Van Tendeloo G, Chem. Phys. Lett., 393(1-3), 64 (2004)
- Lu CH, Qi LM, Yang JH, Zhang DY, Wu NZ, Ma JM, J. Phys. Chem. B, 108(46), 17825 (2004)
- Zhang ZP, Sun HP, Shao XQ, Li DF, Yu HD, Han MY, Adv. Mater., 17(1), 42 (2005)
- Dreyfors JM, Jones SB, Sayed Y, Am. Ind. Hyg. Assoc. J., 50, 579 (1989)
- Trevani LN, Roberts JC, Tremaine PR, J. Solution Chem., 30, 585 (2001)
- Norkus E, Vaskelis A, Polyhedron., 13, 3041 (1994)
- Sahu JN, Mahalik KK, Patwardhan AV, Meikap BC, J. Hazard. Mater., 164(2-3), 659 (2009)
- Mavis B, Akinc M, J. Am. Ceram. Soc., 89(2), 471 (2006)
- Henrist C, Traina K, Hubert C, Toussaint G, Rulmont A, Cloots R, J. Cryst. Growth, 254(1-2), 176 (2003)