화학공학소재연구정보센터
Macromolecular Research, Vol.19, No.11, 1157-1165, November, 2011
Hydrogels as Template Nanoreactors for Silver Nanoparticles Formation and Their Antimicrobial Activities
E-mail:
Silver nanoparticles were synthesized and stabilized using the hydrogel template method. The synthesized hydrogels were composed of acrylamide and styrene sulfonic acid sodium salt monomers with different molar ratios. The copolymer with the highest ionic monomer content was interpenetrated with different chitosan concentrations. The main goal of this study was to evaluate the antimicrobial activity of the prepared hydrogels. The formation of silver nanoparticles within the swollen hydrogel was mainly due to an ion exchange process via the sulfonate and amino groups of the hydrogels. The surface morphology showed a uniform distribution of silver nanoparticles throughout the hydrogel structure. These nanoparticles had face-centered-cubic unit cell structure and dimensions less than 70 nm, as determined by X-ray and UV-visible spectroscopy, respectively. To investigate the antimicrobial activities of the prepared composites, their inhibitory effect was evaluated against bacteria, fungi, and yeasts. Increasing the ionic monomer and chitosan content enhanced both the swelling properties and the antimicrobial activities of these composites. The results clarified that the most sensitive strain was Bacillus subtilis.
  1. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK, J. Colloid Interface Sci., 315(1), 389 (2007)
  2. Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM, J. Colloid Interface Sci., 318(2), 217 (2008)
  3. Balan L, Schneider R, Lougnot DJ, Prog. Org. Coat., 62, 351 (2008)
  4. Farah AA, Alvarez-Puebla RA, Fenniri H, J. Colloid Interface Sci., 319(2), 572 (2008)
  5. Ma Y, Li M, Yang C, Yang X, Colloid Surf. A., 269, 1 (2005)
  6. Jana S, Ghosh SK, Nath S, Pande S, Praharaj S, Panigrahi S, Basu S, Endo T, Pal T, Appl. Catal. A: Gen., 313(1), 41 (2006)
  7. Thomas KG, Kamat PV, Acc. Chem. Res., 36, 888 (2003)
  8. Feng D, Wanf F, Chen Z, Sens. Actuators B: Chem., 138, 539 (2009)
  9. Xiang Y, Chen D, Eur. Polym. J., 43, 4178 (2007)
  10. Liu J, Sutton J, Roberts CB, J. Phys. Chem. C., 111, 11566 (2007)
  11. Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju M, Carbohydr. Polym., 75, 463 (2009)
  12. Rai M, Yadav A, Gade A, Biotechnol. Adv., 27, 76 (2009)
  13. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S, Acta Biomat., 4, 707 (2008)
  14. Du WL, Niu S, Xu YL, Xu ZR, Fan CL, Carbohydr. Polym., 75, 385 (2009)
  15. Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R, Zorrilla C, Liu HB, Ascencio JA, Opt. Mater., 29, 95 (2006)
  16. Zhang YW, Peng HS, Huang W, Zhou YF, Yan DY, J. Colloid Interface Sci., 325(2), 371 (2008)
  17. Kim YS, Kim HW, Lee SH, Shin KS, Hur HW, Rhee YH, Int. J. Biol. Macromol., 41, 36 (2007)
  18. Muzzarelli RAA, Carbohydr. Polym., 77, 1 (2009)
  19. Hasell T, Yang J, Wang W, Brown PD, Howdle SM, Mater. Lett., 61, 4906 (2007)
  20. Singh N, Khanna PK, Mater. Chem. Phys., 104(2-3), 367 (2007)
  21. Tomic´ SL, Mic´ ic´ MM, Filipovic´ JM, Suljovrujic EH, Radiat. Phys. Chem., 76, 801 (2007)
  22. Peppas N, Wright S, Macromolecules., 29, 8798 (1998)
  23. Yiamsawas D, Kangwansupamonkon W, Chailapakul O, Kiatkamjornwong S, React. Funct. Polym., 67, 865 (2007)
  24. Pena E, Frutos G, Manuel J, AAPS PharmSciTech., 5, 1 (2004)
  25. Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P, Acta Biomater., 5, 2279 (2009)
  26. Radheshkumar C, Munstedt H, React. Funct. Polym., 66, 780 (2006)
  27. Joerger RD, Sabesan S, Visioli D, Urian C, Joerger MC, Packag. Technol. Sci., 22, 125 (2009)
  28. Liu N, Chen XG, Park HJ, Liu CG, Liu CS, Meng XH, Yu LJ, Carbohydr. Polym., 64, 60 (2006)
  29. Sanpui P, Murugadoss A, Prasad PVD, Ghosh SS, Chattopadhyay A, Int. J. Food Microbiol., 124, 142 (2008)