화학공학소재연구정보센터
Clean Technology, Vol.17, No.3, 191-200, September, 2011
이산화탄소 저감형 생분해성 고분자
Carbon Dioxide-reducible Biodegradable Polymers
E-mail:
초록
재생 가능한 자원으로 만들어지는 천연고분자, 바이오 고분자 및 합성고분자들은 지속가능하며 환경 친화적인 플라스틱으로 21세기 화두가 되고 있으나 많은 양의 썩지 않는 석유화학 유래 플라스틱이 사용되고 있다. 최근 들어 세 가지 관점에서 생분해성 고분자들이 많은 관심을 받고 있다: 1. 채취하기 쉬운 자원의 고갈에 따른 석유제품의 가격상승, 2. 폐플라스틱에 대한 환경 및 경제적인 관심, 3. 석유화학 유래 재료의 제조에 따른 이산화탄소배출. 이러한 관점에서 제조공정상에서 이산화탄소를 저감할 수 있는 poly(hydroxy alkanoate)나 poly(lactide)와 같은 생분해성 고분자에 대한 상업적 응용에 대한 관심이 고조되고 있다. 이들 고분자들은 초기분해가 진행됨에 따라 급격히 기계적 물성을 상실하기 때문에 상업적 응용을 위하여서는 분해거동이 중요하다. 본 총설에서는 초기분해속도의 조절을 위한 고분자 개질에 대한 최근의 연구동향을 살펴보았다.
Natural polymers, biopolymers, and synthetic polymers based on renewable resources are the basis for the 21th portfolio of sustainable and eco-friendly plastics but high-volume consumable plastics continue to be dominated by nondegradable petroleum-based materials. Three factors have recently made biodegradable polymers economically attractive: (i) rising costs of petroleum production resulting from the depletion of the most easily accessible reserves, (ii) environmental and economic concerns associated with waste plastics, and (iii) emissions of carbon dioxide from preparation of petroleum-based materials. These pressures have driven commercial applications based on biodegradable polymers which are related to reduction of carbon dioxide in processing, such poly(hydroxy alkanoate) and poly(lactide). Since initial degradation of these polymers leads to catastrophic mechanical failure, it is necessary to control the rate of initial degradation for commercial applications. In this article, we have a critic review on the recent progress of polymer modification for the control of degradation.
  1. http://www.eia.doe.gov/iea
  2. http://www.ippak.or.kr/board_upload/12971323530.docx? PHPSESSID=01762243150e6938b66777cd7f20f85b
  3. http://www.k-online.de
  4. Scott G, Gilead D, Degradable Polymers, Chapman & Hall, 1 (1995)
  5. Buchanan F, Degradable Rate of Bioresorbable Materials, CRC press, 1 (2008)
  6. http://www.kwaste.or.kr
  7. Bioplastics Market Trends and U.S.& E.U. Outlook, Fuji-Keizai U.S.A. Inc (2007)
  8. Lemoigne M, Bull. Soc. Chim. Biol., 8, 770 (1926)
  9. Sudesh K, Abe H, Doi Y, Prog. Polym. Sci., 25, 1503 (2000)
  10. Scott D, Degradable polymer, 2nd ed., Kluwer Academic Publishers, Dordrecht, 71 (2002)
  11. Auras R, Lim LT, Selke S, Tsuji H, Poly(lactic acid) Degradable polymer: Synthesis, Structure, Properties, Processing, and Applications, John Wiley & Sons, New Jursey, pp. 3-18 and 227-272. (2010)
  12. http://www.hongjee.com/sub2_2.html
  13. http://www.lgeri.com/industry/chemical/listWebZine.asp?grouping=01030300&cPage=1&srchtype=1&srchword=%uBC 14%uC774%uC624%uD3F4
  14. http://worldcentric.org
  15. Lee WK, Iwata T, Abe H, Doi Y, Macromolecules, 33(26), 9535 (2000)
  16. Lee WK, Gardella JA, Langmuir, 16(7), 3401 (2000)
  17. Koyama N, Doi Y, Macromolecules, 30(4), 826 (1997)
  18. Fredericks RJ, Melveger AJ, Dolegiewtz LJ, J. Polym. Sci.: Polym. Phys. Ed., 22(1), 57 (1984)
  19. Abe H, Doi Y, Aoki H, Akehata T, Macromolecules, 31(6), 1791 (1998)
  20. Abe H, Kikkawa Y, Aoki H, Akehata T, Iwata T, Doi Y,, Int. J. Biol. Macromol., 25, 177 (1999)
  21. Hocking PJ, Revol JF, Marchessault RH, Macromolecules, 29(7), 2467 (1996)
  22. Hocking PJ, Marchessault RH, Timmins MR, Lenz RW, Fuller RC, Macromolecules, 29(7), 2472 (1996)
  23. Iwata T, Doi Y, Kasuya K, Inoue Y, Macromolecules, 30(4), 833 (1997)
  24. Iwata T, Doi Y, Macromol. Chem. Phys., 200(11), 2429 (1999)
  25. Iwata T, Shiromo M, Doi Y, Macromol. Chem. Phys., 203(10-11), 1309 (2002)
  26. Lee WK, Iwata T, Abe H, Doi Y, Macromolecules, 33(26), 9535 (2000)
  27. Min SK, Moon MJ, Lee WK, J. Environ. Sci., 15(2), 177 (2006)
  28. Iwata T, Doi Y, Macromolecules, 31(8), 2461 (1998)
  29. Iwata T, Doi Y, SEN’I GAKKAISHI., 57(6), 172 (2001)
  30. Thissen H, Surface Modification of Biodegradable Polymers, The PBM Series, Vol. 2, In Biodegradable Polymers, (Ed.) Arshady R, Citus Books, London, 175 (2006)
  31. Kim JH, Clean Technol., 4(2), 54 (1998)
  32. Ha CS, Cho WJ, Prog. Polym. Sci., 27, 759 (2002)
  33. Abou-Aiad TH, Polym. Plast. Technol. Eng., 46(4), 435 (2007)
  34. Lee WK, Cho WJ, Ha CS, Takahara A, Kajiyama T, Polymer, 36(6), 1229 (1995)
  35. Lee WK, Ryou JH, Ha CS, Surf. Sci., 542, 235 (2003)
  36. Chu CC, Polymer., 26(3), 591 (1985)
  37. Ryou JH, Ha CS, Kim JW, Lee WK, Macromol. Biosci., 3(1), 44 (2003)
  38. Ryou JH , “Control of Enzymatic Degradation of Microbial Polyesters,” Ph.D. Dissertation, Pusan National University, Busan (2003)
  39. Auras R, Lim LT, Selke SEM, Tsuji H, Poly(lactic acid), Wiely, New Jersey, 59 (2010)
  40. Ikada Y, Jamshidi K, Tsuji H, Hyon SH, Macromolecules., 20(4), 904 (1987)
  41. Macdonald RT, Mccarthy SP, Gross RA, Macromolecules, 29(23), 7356 (1996)
  42. Park CY, Choi YH, Lee WK, J. Environ. Sci., 18(7), 797 (2009)
  43. Lee WK, Iwata T, Gardella JA, Langmuir, 21(24), 11180 (2005)